پایان نامه روش های پیش بینی ضریب بهره وری TBM 138
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word(قابل ویرایش و آماده پرینت)
تعداد صفحه:142
حجم پایان نامه : 19mb
فهرست مطالب :
مقدمه
فصل اول
1- اشنایی و سابقه.............................................................................. 1
1-1- نرخ پیشروی.......................................................................... 3
1-2- نرخ نفوذ.............................................................................. 3
فصل دوم
2- آزمون های مورد نیاز برای پیش بینی بهره وری TBM ........................... 11
2-1- آزمون تعیین تردی................................................................... 11
2-2- آزمایش اندیس جی سیورز.......................................................... 12
2-3- آزمون سایش......................................................................... 12
2-4- آزمون اندیس سوشار................................................................ 13
2-5- آزمون های برش ازمایشگاهی..................................................... 14
2-5-1- آزمون برش خطی............................................................. 14
2-5-2- آزمون برش دورانی........................................................... 16
6-2- آزمون پانچ........................................................................... 16
2-6-1- تاریخچه آزمون................................................................ 18
7-2- آزمون های تعیین سختی............................................................ 18
8-2- آزمون های مقاومت سنگ.......................................................... 19
9-2- خواص توده سنگ.................................................................. 19
فصل سوم
3- تحلیل مکانیسم برش سنگ توسط برش دهنده های دیسکی......................... 21
3-1- فرضیات پایه......................................................................... 22
3-2- توزیع فشار و فرایند برش......................................................... 26
3-3- طراحی ماشین و محاسبات......................................................... 33
3-4- پیش بینی نرخ نفوذ................................................................. 33
فصل چهارم
4- پیش بینی نرخ نفوذ بر اساس تردی................................................... 37
4-1- ارزیابی برخی داده های حاصل از آزمایش...................................... 38
فصل پنجم
5- پیش بینی نرخ نفوذ با استفاده از نتایج آزمون پانچ................................. 48
5-1- تعیین نرخ نفوذ..................................................................... 48
5-2- رده بندی سنگ با استفاده از آزمون پانچ....................................... 51
5-3- آزمون پانچ ابزاری جهت ارزیابی پارامترهای ماشین......................... 54
فصل ششم
6- پیش بینی نرخ نفوذ بر مبنای مدل فازی – عصبی و نرخ پیشروی با بهره گیری از
شبکه عصبی............................................................................... 56
6-1- روش فازی – عصبی............................................................. 56
6-1-1- اجزاء منطقی................................................................ 58
6-1-2- اجزاء عددی................................................................. 59
6-2- مدل نرخ نفوذ ( روش عصبی – فازی).......................................... 60
6-2-1- ویژگیهای توده سنگ........................................................ 60
6-2-2- ویژگیهای ماشین............................................................. 60
6-2-3- هندسه تونل................................................................... 61
6-2-4- تحلیل داده ها................................................................. 62
6-2-5- مدلهای عصبی – فازی ( روش تاکاگی – سوگنو)....................... 64
6-3- مقایسه با روشهای مختلف........................................................ 68
6-4- مدل نرخ پیش روی ( بر مبنای شبکه عصبی)................................. 69
6-4-1- انتخاب ساختار مدل و کاهش متغییرها.................................... 69
6-4-2- الگوریتم آموزش شبکه عصبی............................................ 71
6-4-3- توپولوژی شبکه عصبی.................................................... 71
6-4-4- بهبود قابلیت تعمیم شبکه عصبی.......................................... 71
6-4-5- نتایج – تفسیر – اعتبار و توان تعمیم مدل............................... 73
6-4-6- مقایسه با مدلهای آماری.................................................... 73
فصل هفتم
7- پیش بینی بهره وری TBM با استفاده از.................................. 74
7-1- و ....................................................................... 74
7-2- سایش برش دهنده............................................................... 81
7-3- رابطه میان نرخ نفوذ و نرخ پیشروی با .............................. 82
7-4- تخمین زمان اتمام تونل......................................................... 84
فصل هشتم
8- پیش بینی بهره وری TBM براساس فاکتور پایداری تونل..................... 85
8-1- تخمین ضریب بهره وری....................................................... 86
8-2- تخمین نرخ پیشروی............................................................ 87
8-3- مثالی از کاربرد مدل............................................................ 89
8-4- تخمین زمان اتمام تونل........................................................ 92
فصل نهم
9- پیش بینی بهره وری TBM برمبنای روش NTH............................. 94
فصل دهم
10- پیش بینی بهره وری TBM بر مبنای روش CSM......................... 106
10-1- نیروهای عمودی روی برش دهنده ............................... 108
10-2- نیروهای غلتشی ....................................................... 109
10-3- رابطه مدرسه عالی معدن کلرادو جهت تعیین نیروهای روی برش دهنده در
یک نفوذ مشخص.......................................................... 113
10-4- تصحیح نرخ نفوذ.......................................................... 116
10-4-1- شاخص دشواری زمین (GDI )................................... 116
10-4-2- انرژی ویژه........................................................... 117
10-4-3- اصلاحات پیشنهادی روش CSM جهت تخمین نرخ پیشروی... 117
نتیجه گیری............................................................................ 122
منابع................................................................................... 124
چکیده :
در طول چند دهه گذشته تکنولوژی TBM های سنگ توسعه زیادی پیدا کرد. این ماشین ها
اکنون به مرحله ای رسیده اند که می توانند در هر نوع سنگ یا خاکی حفر کنند ولی به هر
حال حفر با ماشین پر خطر بوده زیرا همیشه امکان روبرو شدن با زمینی که ماشین توانایی
حفردر آن را ندارد وجود دارد. پیش بینی ضریب بهره وری بخش مهمی از هر پروژه حفر
مکانیزه است. تعداد برش دهنده های مورد نیاز هزینه های آزمایشگاهی – هزینه های
سرمایه ای و عملیاتی همه از دوره ساخت پروژه و دوره ساخت پروژه از ضریب بهره
وری و نرخ نفوذ تاثیر می پذیرد که تخمین این دو بسیار مشکل ا ست. تاکنون تلاش های
زیادی جهت گسترش روشهای پیش بینی بهره وری و پیش بینی دقیق نرخ پیشروی در یک
شرایط زمین شناسی شده است. در کشورهای مختلف و توسط شرکت های مختلف سازنده
TBM دامنه وسیعی از روشهای پیش بینی ضریب بهره وری استفاده می شود.
اصولا" این روشها بر مبنای تحلیل نظری و داده های تجربی بنا نهاده شده اند. در حالت
کلی می توان روشهای ارائه شده را به دو گروه تقسیم کرد. روشهای کاملا" تجربی و
روشهای تئوری/ تجربی. گروه اول بر مبنای داده های جمع اوری شده از زمین و استفاده
از تحلیل رگرسیون میان پارامترهای ماشین خواص سنگ و نرخ نفوذ حاصل شده اند
روش NTH یک نمونه از این روشها است. گروه های دیگر بر جزئیات فرایند برش
در سنگ تحلیل نظری فرایند شکست سنگ با ابزار مکانیکی و نیروهای وارد بر هر برش
دهنده به منظور دستیابی به یک نرخ نفوذ مشخص متمرکز شده اند.
روش CSM و برخی از روشها که توسط کارخانه های سازنده TBM توسعه داده شده اند
در این گروه قرار می گیرند. این روشها می توانند در بهینه کردن طرح تاج حفار به کار
گرفته شوند. نیروهای اعمال شده بر برش دهنده که توسط این روشها تعیین می شوند میتواند
در تخمین نیروی محوری گشتاور و توان مورد نیاز نیز استفاده شود.
در حالت عمومی روشهای پیش بینی بهره وری بر مبنای قواعد زیر پایه گذاری شده اند:
1) داده های حاصل از زمین یا آزمایش
2) آزمایشهای کوچک مقیاس ( ازمونهای شاخص)
3) آزمایشهای بزرگ مقیاس
4) روشهای تجربی
5) مدلهای تئوری
به عنوان مثال روش پیش بینی NTH ترکیبی از قواعد 1- 2- 4 است و روش CSM
شامل تمامی قواعد ذکر شده می شود.
در تمام روشهای پیش بینی بهره وری نمونه گیری صحیح یک عامل کلیدی است. اگر نمونه
های مورد ازمایش معرف ( نماینده شرایط واقعی زمین) نباشند نتایج پیش بینی قا بل اعتماد
نخواهد بود. تخمین بهره وری TBM در سنگهای سخت یک فرایند بسیار پیچیده است که به
شرایط زمین شناسی خواص توده سنگ و جزئیات ماشین( مانند اندازه برش دهنده ها-
فاصله و بار اعمالی بر آنها) مربوط می شود. فرایند برش و نفوذ در سنگ توسط برش
دهنده مستلزم شکست کششی- برشی و فشاری سنگ است.
درزه ها و شکستگی ها تا حدودی نرخ نفوذ ماشین را بهبود می بخشند.
بر اساس مطالعات صورت گرفته میان و نرخ نفوذ همبستگی خوبی در TBM های
سنگ سخت وجود دارد.
در این رابطه میزان تنش های برجا و مقاومت فشاری
توده سنگ می باشد
1-1- نرخ پیشروی:
نرخ پیشروی ماشین از دو پارامتر عمده حفر و نگهداری تاثیر می پذیرد. گاهی اوقات
هنگام نصب پوشش امکان حفر وجود ندارد( مثلا" TBM های سپردار) یا وجود مناطق
برشی که حفر درون آنها بدون تحکیم – امکان گیر افتادن ماشین را زیاد می کند باعث
کاهش ضریب بهره وری می شود. عاملی که در حفر سنگ نقش کلیدی را بازی می کند
نرخ نفوذ است. نرخ پیشروی به صورت زیر تخمین زده می شود.
نرخ نفوذ ضریب بهره وری = نرخ پیشروی
2-1- نرخ نفوذ:
نرخ نفوذ TBM های به صورت تیپیک با توجه به خوا ص ماده سنگ تخمین زده می شود.
وابستگی نرخ نفوذ به فاصله داری و شرایط درزه ها کاملا" شناخته شده است. تنها روشی
که تاثیر ناپیوستگیها را لحاظ کرده است روش انسیتو تکنولوژی نروژ است.
در ادامه به برخی از معادلات تجربی که بر مبنای داده های آزمایشگاهی برای تعیین نرخ
نفوذ ارائه شده اند اشاره می شود.
تارکی در سال 1973 روشی را برای پیش بینی نرخ نفوذ تنها بر مبنای سختی سنگ
پیشنهاد کرد که در آن سختی سنگ با استفاده از بازگشت چکش اشمیت و سختی سایشی
سنگ محاسبه می شد.
بزرگترین عیب روش تارکی عدم منظور کردن ویژگی های ماشین و توده سنگ که در
ضریب بهره وری TBM بسیار موثر می باشد.
گراهام در سال 1976 برای سنگ های که مقاومت فشاری انها در دامنه 140- 200 مگا
پاسکال می باشد رابطه زیر را ارائه کرد:
1-1
که در آن:
میزان نفوذ تاج حفار به میلی متر وقتی تاج حفار یک دور می زند.
نیروی عمودی اعمال شده بر هر برش دهنده بر حسب KN
UCS مقاومت فشاری تک محوره بر حسب MPa
رگسبوروگ و فیلیپس در سال 1975 بر مبنای تحلیل عددی مدلی را ارائه کردند که
قطر برش دهنده های دیسکی و نیروی محوری روی آنها مقاومت فشاری تک محوره و
زاویه لبه دیسکها را منظور می کرد. در این مدل ویژگیهای توده سنگ از قبیل نا پیوستگیها
در نظر گرفته نمی شود.
ساختار این مدل دقیقا شبیه مدل گراهام می باشد با این تفاوت که زاویه لبه کاترها نیز در
مدل منظور شده است.
ازدمیر در سال 1978 مدلی را ارائه کرد که بر مبنای آن با توجه به قطر- موقعیت- نفوذ
و فاصله داری برش دهنده های دیسکی – مقاومت فشاری تک محوره – مقاومت برشی و
زاویه لبه دیسکها- نیروی نرمال و نیروی غلتشی دیسکها محاسبه می شد. این مدل تاثیر
نا پیوستگی ها را منظور نمی کرد.
فارمر و گلوسوپ در سال 1980 رابطه زیر را برای سنگ های رسوبی ارائه کردنند.
1-2
که در آن:
میزان نفوذ تاج حفار به میلی متر وقتی تاج حفار یک دور می زند.
مقاومت کششی برزیلی بر حسب MPa
نیروی محوری اعمال شده بر هر برش دهنده بر حسب KN
هاگس برای معدن کاری در معادن زغال رابطه زیر را ارائه کرد:
1-3
که در آن :
میزان نفوذ تاج حفار به میلی متر وقتی تاج حفار یک دور می زند.
D قطر دیسک بر حسب میلی متر ( فرض شده است که تنها یک دیسک در هر شیار
وجود داشته باشد)
نیروی اعمال شده بر هر برش دهنده بر حسب KN
UCS مقاومت فشاری تک محوره می باشد.
بامفورد در سال 1984 یک مدل چند خطی به صورت زیر ارائه کرد که در ان نرخ
نفوذ به عنوان تابعی از سختی چکش اشمیت- نیروی محوری ماشین – اندیس نفوذ
مخروطی و زاویه مقاومت برشی بیان شده بود.
این مدل تنها بر مبنای داده های حاصل از یک تونل حاصل شده بود لذا تاثیر تغییرا ت
قطر تونل را نمی توا نست منظور کند.
1-4
که در آن:
P نرخ نفوذ بر حسب متر در ساعت
S سختی چکش اشمیت
T نیروی محوری ماشین بر حسب تن
N شاخص نفوذ مخروطی بر حسب نیوتن بر میلی متر
زاویه مقاومت برشی بر حسب درجه
سانیو در سال 1985 مدلی را برای تخمین نرخ نفوذ به صورت غیر مستقیم ارائه کرد.
سانیو نشان داد که نسبت بین نرخ نفوذ عمود بر لایه بندی و موازی لایه بندی برابر با نسبت
بین اندیس بار گذاری نقطه ای عمود بر لایه بندی و موازی لایه بندی است.
روش سانیو می تواند به عنوان یک فاکتور تصحیح در سنگهای با نا پیوستگی نزدیک به
هم استفاده شود.
بوید در سال 1986 مدلی متفاوت با مدلهای اشاره شده ارائه کرد.
در مدل فرض شده بود که هر متر مکعب توده سنگ به مقدار انرژی خاصی بر حسب
KWh برای خردایش نیاز دارد که به ان انرژی ویژه می گویند.
اگر سطح مقطع تونل و انرژی ماشین مشخص باشد نرخ نفوذ به راحتی با دانستن انرژی
ویژه سنگ محاسبه می شود. 6
این مدل معمولا" برای پیش بینی نرخ نفوذ ماشین های حفار بازویی استفاده می شود
رابطه ارائه شده توسط بوید به صورت زیر می باشد:
1-5
که در آن:
نرخ نفوذ بر حسب متر بر ساعت
توان تاج حفار بر حسب کیلووات
انرژی ویژه بر حسب کیلووات ساعت بر متر مکعب
مقطع تونل
مک فیت – اسمیت و فاول در سال 1977 روابطی را برای پیش بینی انرژی ویژه سنگها
ارائه کردنند.
از معایب این روش این ا ست که انرژی ویژه تنها به خواص سنگ بستگی نداشته و به ابعاد
تراشه های ایجاد شده بستگی زیادی دارد بعلاوه انرژی منتقل شده به سنگ ا لزاما" همان
انرژی ماشین نیست. لذا این روش هنگامی می تواند مناسب باشد که هم ویژگیهای ماشین
و هم ویژگیهای سنگ شناخته شده باشد.
در جدول 1-1 مقادیر انرژی ویژه برای چند سنگ آورده شده است.
ماسه سنگ هوازده شده دولومیت – اهک – سنگهای گرانیت- گنیس – کوارتزیت
نوع سنگ
لای سنگ - شیل رسوبی سخت سخت - شیست
هاگس در سال 1986 مدلی شبیه مدل گراهام که نیروی عمودی وارد بر برش دهنده های
دیسکی – مقاومت فشاری تک محوره – دور – تعداد و شعاع برش دهنده ها را منظور
می کرد ارائه کرد. این مدل تاثیرات ناپیوستگی ها را منظور نمی کرد.
مدل ارائه شده توسط هاگس به صورت زیر می باشد و کاربرد ان در لایه های زغال
معتبر است.
1-6
که در آن:
نرخ نفوذ بر حسب متر برساعت
نیروی محوری وارد بر هر برش دهنده بر حسب کیلو نیوتن
سرعت چرخش تاج حفار بر حسب
تعداد برش دهنده های دیسکی در هر شیار
مقاومت فشاری تک محوره بر حسب مگا پاسکال
شعاع متوسط برش دهنده های دیسکی بر حسب متر
ایناراتو در سال 1991 مدلی ارائه کرد که در آن با استفاده از RSR به پیش بینی نرخ نفوذ
پرداخت . ایناراتو در مدل خود مقاومت فشاری تک محوره را به عنوان یک فاکتور مستقل
از RSR در نظر گرفت.
ساندین و واستد در سال 1994 مدلی را ارائه کردند که در آن از شاخص نفوذ و قابلیت حفر
استفاده شده بود. این مدل نا پیوستگی های توده سنگ – نیروی وارد بر برش دهنده ها و
سرعت چرخش تاج حفار را منظور می کند.
این مدل بر مبنای سه مطالعه موردی در سوئد بر روی سنگهای دگرگونی و آذرین بدست
آمده است.
با توجه به مدلهای ارائه شده می توان دریافت که مدل یا روش واحدی برای پیش بینی نرخ
نفوذ وجود ندارد. جهت مقایسه مقادیر مربوط به ویژگی های سنگ نرخ نفوذ ماشین در عمل
و نرخ نفوذ پیش بینی شده توسط برخی مدلهای ارائه شده برای تعدادی از سنگها در جدول
1-2 آورده شده است.
در تمامی موارد میزان نفوذ TBM و نیروی محوری توسط گشتاور یا ظرفیت ترابری
سیستم محدود می شود.
و...
نقش راکتورهای سلفی و بانکهای خازنی در اصلاح ضریب قدرت و افت ولتاژ شبکه
153 صفحه در قالب word
فهرست مطالب:
بخش اول :راکتورهای سلفی
فصل اول – کلیات
1- حدود
2-اهداف
3-تعاریف
فصل دوم راکتورهای محدودکننده جریان وراکتورهای زمین کننده نوترسیستم
1-4- حدود
2-4- طراحی
5-تعاریف
6-مقادیرنامی
7-سطح عایقی
8-توانایی تحمل جریان کوتاه مدت
9-افزایش دما
10-پلاک شناسایی
11-آزمایشات راکتور
12-تلرانسها
فصل سوم-راکتورهای میراکننده
1-13-حدود
14-تعاریف
15-مقادیرنامی
16- سطح عایقی
17-افزایش دما
18-پلاک شناسایی
19-آزمایشها
فصل چهارم- راکتورهای تنظیم کننده (جهت فیلتر کردن)
1-21-حدود
22-تعاریف
23-مقادیرنامی
24-پلاک شناسایی
25-آزمایش ها
26-تلرانس
فصل پنجم – ترانسفورمر زمین کننده (متصل کننده نوترها در سیستم)
27 – مقدمه
1-28-حدود
29- تعاریف
30-مقادیر نامی
31- توانایی تحمل جریان زمین نامی
32- افزایش حرارت دما
33- سطح عایقی
34- پلاک شناسی
35- آزمایشها
36-تلرانسها
فصل ششم –راکتور های محدودکننده جریان قوس
1-37- حدود
38-تعاریف
39- مقادیر نامی
40- محدوده تنظیم
41- افزایش درجه حرارت سیم پیچ
42-سطح عایقی
43-پلاک شناسایی
44-آزمایشها
45-تلرانسها
فصل هفتم – بسته بندی ،حمل وانبار کردن
ضمیمه A :روش تعیین درجه حرارت سیم پیچ
ضمیمه B :اندازه گیری تلفات
ضمیمه c :اندازه گیری تلفات وجریان بی باری
ضمیمه D- :اندازه گیری ولتاژ اتصال کوتاه(درتپ اصلی )،امپدانس اتصال کوتاه وتلفات اتصال کوتاه
ضمیمه - E : اندازه گیری امپدانس توالی صفردرترانسفورمر های سه فاز
ضمیمه - F :محاسبه ی درجه حرارت
ضمیمه – G :آزمایشهای تپ چنجرقابل قطع درزیر بار
بخش دوم : خازن ها
مقدمه
فصل اول – کلیات
1- حدود
2- اهداف
3- تعاریف
4- طراحی و ساخت
فصل دوم - مشخصات خازن
5- توان واحد خازنی
6- اضافه بار قابل قبول
7- پلاک شناسائی خازن
8- مشخصات کلی خازن
فصل سوم - آزمایشات خازن
9- کلیات آزمایش
10- جزئیات آزمایشات
11- سطوح عایقی و ولتاژهای تست بین ترمینال خازن و زمین
فصل چهارم - راهنمای نصب و بهره برداری خازن
12- کلیات
13- نحوه انتخاب خازن برای نصب در شبکه
14- نحوه انتخاب خازنها توسط مشترکین
15- نصب خازنهای فشا ضعیف
16- نصب خازنهای فشار قوی
17- دمای کارخازن
18- شرایط ویژه
19- اضافه ولتاژها
20- جریانهای بار
21- انتخاب سطح عایقی
22- ابزارهای کلید زنی و حفاظتی و کنترلی و نحوه اتصال آنها
23- تعمیر و نگهداری خازنهای فشار قوی
فصل پنجم - بسته بندی ، حمل و انبار کردن
فصل ششم – مشخصات خازن و تجهیزات متعلقه
نتیجه گیری
ضمیمه A : اطلاعات مربوط به اندازه گیری یونیزاسیون خازن
ضمیمه B: محاسبه توان یک خازن سه فاز با استفاده از کاپاسیتانس اندازه گیری شده سه خازن تکفاز
ضمیمه C :جدول انتخاب ظرفیت بانکهای خازنی
مراجع
مقدمه :
جبران سازی توان راکتیو یکی از ابزار بهینه سازی هزینه انرژی و برگشت سریع سـرمایه است. در طول چند سال گذشته با بهره گیری از مواد جدید و روشهای تولید پیشرفته، خازنهایی با تلفات بسیار اندک در حجم های کوچک ساخته شده است. با توسـعه وتولیـد کنتاکتـورهای خـازنی و رگـولاتورهای میکـروپرسسوری بسیار پیشـرفته که تضمین کننده رفتار مناسب وبهینه بانک خازنی به تغییرات بار است، بانکهای خازنی کاملا قابل اعتماد گردیدهاند. با این وجود دلایل بسیاری بر لزوم آشنایی مشاوران و مصرف کنندگان باجنبه های پیچیده این موضوع وجود دارد.
بدلیل افزایش اعوجاجهای هارمونیکی درشبکه های فشار ضعیف و متوسط ، طراحی بانکهای خازنی بسیار مشـکل و پیچیده شده اند. یکسو سازها، کنترلرهای الکترونیکی موتورها، مبـدلهای فرکـانس و دیگر بارهای الکتـرونیکی برای جبـران توان راکتیو مصرفی، نیاز به خازن دارند و در عین حال این مصرف کنندگان مولد هارمونیک هستند. در صورت نزدیک بودن فرکانس رزونانس مجموعه ترانس و خازن به فرکانس هارمونیکها، امکان وقوع خطر بسیار محتمل است. بنابراین به منظور اجتناب از مسایل و هزینه های بعدی قویا پیشنهاد میگردد تا افراد با تجربه برای دستیابی به طرحی مناسب مورد مشاوره قرارگیرند.
اغلب دستگاهها و مصرف کنندگان الکتریکی برای انجام کار مفید نیازمند مقداری توان راکتیو برای مهیا کردن شرایط لازم برای انجام کار می باشند. بعنوان مثال " موتورهای الکتریکی "A.C برای تبدیل انرژی الکتریکی به انرژی مکانیکی، نیازمند تولید شار مغناطیسی در فاصله هوایی موتور هستند. ایجاد شار تنها توسط تـوان راکتیـو امکان پذیر و با افزایش بار مکانیکی موتور مقدار توان راکتیو بیشتری مصرف می گردد.
عمده مصرف کنندگان انرژی راکتیو عبارتند از:
1- سیستم های الکترونیک قدرت
الف)- مبدل های AC/DC (Rectefiers)
ب)- مبدل های DC/AC (Inverters)
ج)- مبدل های AC/AC (Converters)
د)- چاپرها (Choppers)
2- مصرف کنندگان یا تجهیزاتی که دارای مشخصه غیر خطی هستند.
3 - مصرف کنندگانی که در شکل موج ولتاژ محل تغذیه خود اعوجاج (هارمونیک) ایجاد مینمایند .
4 - متعادل ساز های بار های نا متعادل
5 - تثبیت کنندههای ولتاژ
6- کورههای القایی
7- کورههای قوس الکتریکی
8- سیستم های جوشکاری AC , DC
همانگونه که ذکر شد مصرف انرژی راکتیو اجتناب ناپذیر است.
انتقال انرژی راکتیو، انتقال جریان الکتریکی است و انتقالش نیازمند به کابل با سطح مقطع بزرگتر، دکل های فشار قوی مقاومتر و در نتیجه هزینه های مازاد است. همچنین افزایش تلفات الکتریکی و کاهش راندمان شبکه را نیز به همراه دارد. در مواردی مانند کاربردهای الکترونیک قدرت و متعادل سازی بارهای نامتعادل حتی انتقال انرژی راکتیو هم کار ساز نبوده و باید انرژی در محل تولید گردد.
خازن اصطلاحا تولید کننده انرژی راکتیو است، اما خازن توان راکتیو تولید نکرده بلکه مصرف کننده آن نیز میباشد. فقط در زمانی که سلف انرژی راکتیو در خود ذخیره می نماید (ازشبکه می کشد) خازن، انرژی ذخیره شده خود را به شبکه تحویل می دهد و در زمانی که سلف انرژی ذخیره شده اش را به شبکه پس می دهد خازن از شبکه انرژی می کشد. حال اگر سلف و خازن در کنار هم قرار گیرند، هنگامیکه خازن انرژی می دهد سلف آن انرژی را می گیرد و زمانی که خازن انرژی می گیرد سلف انرژی می دهد که موجب تعادل انرژی بین سلف و خازن گشته و دیگر تبادل انرژی بین مصرف کننده و شبکه صورت نمی گیرد.
ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
متن کامل را می توانید در ادامه دانلود نمائید
چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است
دانلودپایان نامه کارشناسی ارشد رشته مهندسی شیمی اندازه گیری ضریب گازهای CH4, CO2, N2در هیدرو کربن های نفتی با فرمت pdfدر 100صفحه.
این پایان نامه جهت ارائه در مقطع کارشناسی ارشد رشته مهندسی شیمی طراحی و تدوین گردیده است . و شامل کلیه مباحث مورد نیاز پایان نامه ارشد این رشته می باشد.نمونه های مشابه این عنوان با قیمت های بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی ما این پایان نامه را با قیمت ناچیزی جهت استفاده دانشجویان عزیز در رابطه با منبع اطلاعاتی در اختیار شما قرار می دهند. حق مالکیت معنوی این اثر مربوط به نگارنده است. و فقط جهت استفاده از منابع اطلاعاتی و بالابردن سطح علمی شما در این سایت ارائه گردیده است .
فرمت فایل : WORD (قابل ویرایش)
تعداد صفحات:110
پایان نامه برای دریافت درجه کارشناسی ارشد “M.Sc”
مهندسی شیمی- فرآیند
فهرست مطالب:
شماره صفحه عنوان مطالب
1 چکیده ...........................................................................................................................................................
2 مقدمه ............................................................................................................................................................
فصل اول : اهمیت ضریب نفوذ در انبارداری سوخت مایع
6 1-1) مقدمه .................................................................................................................................................
6 1-2) پارامتر های محیطی بر انبارداری سوخت مایع..........................................................................
6 1-2-1) خواص مطلوب سوختهای مایع.................................................................................................
1-2-2) فاکتورهای انبارداری سوختهای مایع .....................................................................................
1-2-3) گروه های خطرناک سوختهای مایع........................................................................................
1-2-4) محل های خطر ناک سوختهای مایع......................................................................................
1-3) اهمیت ضریب نفوذ در انبارداری سوخت مایع ..........................................................................
فصل دوم : تئوری ها و معادلات معرفی شده برای ضریب نفوذ و تحلیل آنها برای حالت گازی
2-1) تئوری نفوذ در گازها..........................................................................................................................
2-1-1) تئوری و ضرایب نفوذ سیستم های دو تایی گازها در فشار پایین.......................................
2-1-1-1) معادله برد و اسلاتری(BS)....................................................................................................
2-1-1-2) معادله چاپمن-انسکوگ(CE) ..............................................................................................
2-1-1-3) معادله رید و شرود (RS).......................................................................................................
2-1-1-4) معادله استفان –ماکسول(SM)............................................................................................
2-1-1-5) معادله هایرش فلدر-برد-اسپاتس (HBS).........................................................................
2-1-1-6) معادلۀ وایک- لی(WL)..........................................................................................................
2-1-1-7) معادلۀ گیلیلند...........................................................................................................................
2-1-1-8) چن-اوتمر(CO).......................................................................................................................
2-1-1-9) معادلهْ هاوآنگ(Huang) و همکارانش.................................................................................
2-1-1-10) معادله فولر ،شتلر وگیدینگز(FSG)..................................................................................
فصل سوم : دستگاهها و روشهای معرفی شده برای اندازه گیری ضریب نفوذ درحالت گازی و انتخاب روش مناسب
3-1) مقدمه ......................................................................................................................................................
3-2) انواع روشها و دستگاههای معرفی شده.............................................................................................
3-2-1) روش کروماتوگرافی گازی(GC)...................................................................................................
3-2-2) روشهای تداخلی جریان(PF).........................................................................................................
3-2-3) روش لوله ای......................................................................................................................................
3-2-4) روش لوله –بسته(CT)...................................................................................................................
3-2-5) روش دو حبابی (دوبالنی) (TB)...................................................................................................
3-2-6) روش لولۀ استفان- ماکسول یا روش لولۀ تبخیری(SM).......................................................
3-2-7) روش کاتافرز(کاتافورز).....................................................................................................................
3-2-8) روش نفوذ برگشتی...........................................................................................................................
3-2-9) روش پراکندگی تیلوری(TD).......................................................................................................
3-2-10) روش مویینگی................................................................................................................................
3-2-11) روش سلول دیافراگمی(سلول غشایی) (DC).........................................................................
3-2-12) روش تداخل سنجی هالوگرافیکی(تمام نگاری) (HI)...........................................................
3-2-13) روش طیف سنجی تحرک یونی (اسپکترومتری تحرک یونی)(IMS).............................
3-2-14) روش تداخل موج دمایی(TWI)................................................................................................
3-2-15) روش نشتی مویینگی(CL).........................................................................................................
3-2-16) روش انتشار نورپایا یا (روش لیزر-دوپلر)(SSS-LD)...........................................................
3-2-17) روش تبخیر درحالت پایا (SSE)...............................................................................................
3-2-18) روش تداخل سنجی گوه ای(WI)............................................................................................
3-2-19) روش دیسک چرخان(SD)..........................................................................................................
3-2-20) روش جذب صوت(SA)...............................................................................................................
فصل چهارم: انجام آزمایشات ، معرفی تجهیزات مورد استفاده ، نحوه محاسبات و ارائه فرمولهای مربوطه
8081 4-1) مقدمه........................................................................................................................................................
4-2) خاصیت کشش سطحی..........................................................................................................................
4-3) پدیدة مویینگی........................................................................................................................................
4-4) آزمایشات و معرفی تجهیزات مورد استفاده.......................................................................................
4-4-1) تجهیزات و سیالات مورد استفاده...................................................................................................
4-4-1-1) سیال................................................................................................................................................
4-4-1-2) تجهیزات..........................................................................................................................................
4-4-1-2-1) لولۀ نفوذ همراه با سه راهی اختناقی(لولۀ استفان-ماکسول)..........................................
4-4-1-2-2) کمپرسور....................................................................................................................................
4-4-1-2-3) فلومتر.........................................................................................................................................
4-4-1-2-4) ترمومتر جیوه ای.....................................................................................................................
4-4-1-2-5) هیتر............................................................................................................................................
4-4-1-2-6) ترازو............................................................................................................................................
4-4-1-2-7) حمام آب...................................................................................................................................
4-4-1-2-) قیف های شیشه ای................................................................................................................
4-4-1-2-9) مگنت.........................................................................................................................................
4-5) اندازه گیری فشار هوای خروجی از فلومتر و فشار کل سیستم....................................................
4-6) نحوۀ انجام آزمایش ...............................................................................................................................
4-7) تست مقایسه............................................................................................................................................
4-8) نحوة انجام محاسبات ............................................................................................................................
فصل پنجم: انجام محاسبات و بحث و بررسی نتایج
5-1) مقدمه........................................................................................................................................................
5-2) انجام محاسبات........................................................................................................................................
1-5-2) تعیین ضریب نفوذ آب مقطر............................................................................................................
5-5-2) تعیین ضریب نفوذ آمین آزید.........................................................................................................
5-3) مقایسه ی بین ضرایب نفوذ تجربی آب و آمین آزید با ضرایب نفوذ آنها در مراجع............. 1
5-4) تخمین مدل تجربی آمین آزید باتوجه به معادلات تجربی حالت گازی در مراجع...................
5-5) تخمین شعاع انبارداری..........................................................................................................................
فصل ششم: نتیجه گیری و پیشنهادات
6-1) نتیجه گیری.............................................................................................................................................
6-2) پیشنهادات................................................................................................................................................
منابع و ماخذ.
منابع فارسی.........................................................................................................................................................
منابع لاتین...........................................................................................................................................................
83
85
چکیده انگلیسی...................................................................................................................................................
پیوست(1)............................................................................................................................................................
فهرست جدول ها
شماره صفحه عنوان
17
32 2-1: مقادیر حجم های نفوذ اتمی ومولکولی ارائه شده..............................................................................
4-1: ضرایب نفوذ آب در هوا در شرایط اتمسفری......................................................................................
44 4-2 : نمایشی از جدول داده ها جهت یافتن ضریب نفوذ........................................................................
شماره صفحه 5-1: داده های اختلاف جرم آب مقطر ( ) و زمانهای مربوطه( ) وضریب نفوذ مربوطه آنها در دمای C ˚95/15..................................................................................................................................
5-2 : داده های اختلاف جرم آب مقطر ( ) و زمانهای مربوطه( ) وضریب نفوذ مربوطه آنها در دمای C ˚05/25.................................................................................................................................
5-3 : داده های اختلاف جرم آب مقطر ( ) و زمانهای مربوطه( ) وضریب نفوذ مربوطه آنها در دمای C ˚45/39................................................................................................................................
5-4 : داده های اختلاف جرم آب مقطر ( ) و زمانهای مربوطه( ) وضریب نفوذ مربوطه آنها در دمای C ˚05/60................................................................................................................................
5-5: داده های اختلاف جرم آمین آزید ( ) و زمانهای مربوطه( ) وضریب نفوذ مربوطه آنها در دمای C ˚95/15................................................................................................................................
5-6: داده های اختلاف جرم آمین آزید ( ) و زمانهای مربوطه( ) وضریب نفوذ مربوطه آنها در دمای C ˚05/25..................................................................................................................................
5-7: داده های اختلاف جرم آمین آزید ( ) و زمانهای مربوطه( ) وضریب نفوذ مربوطه آنها در دمای C ˚45/39..................................................................................................................................
5-8: داده های اختلاف جرم آمین آزید ( ) و زمانهای مربوطه( ) وضریب نفوذ مربوطه آنها در دمای C ˚05/60..................................................................................................................................
5-9: ضرایب نفوذ حاصله آب مقطر و ماده سوختی آمین آزیدی در برابر ضرایب نفوذ آب در مراجع....................................................................................................................................................................
5-10: مقایسه ی معادلات تجربی برای آب مقطر در دمای (K1/289=C ˚15/95) و
( K 2/298=C ˚05/25).................................................................................................................................
5-11:مقایسه ی معادلات تجربی برای آب مقطر در دمای (K 2/298=C ˚05/25) و
( K 6/312=C˚45/39)..................................................................................................................................
67 5-12: مقایسه ی معادلات تجربی برای آب مقطر در دمای ( K6/312=C ˚45/39) و ( K2/333=C ˚05/60)................................................................................................................................
5-13: مقایسه ی معادلات تجربی برای آمین آزید در دمای (K1/289=C ˚15/95) و ( K2/298=C ˚05/25)....................................................................................... ........................................
69 5-14: مقایسه ی معادلات تجربی برای آمین آزید در دمای (K2/298=C ˚05/25) و ( K 6/312=C ˚45/39)................................................................................................................................
5-15: مقایسه ی معادلات تجربی برای آمین آزید در دمای (K6/312=C ˚45/39) و
(K2/333=C ˚05/60).................................................................................................................................
فهرست نمودارها
شماره صفحه عنوان
44
50 4-1: شیب داده های بر حسب .................................................................................................
5-1 : شیب منحنی داده های اختلاف جرم بر حسب زمان برای سیستم Air- در دمای C ˚95/15....................................................................................................................................................
74 5-2 : شیب منحنی داده های اختلاف جرم بر حسب زمان برای سیستم Air- در دمای C ˚05/25...................................................................................................................................................
5-3 : شیب منحنی داده های اختلاف جرم بر حسب زمان برای سیستم Air- در دمای C ˚45/39...................................................................................................................................................
5-4 : شیب منحنی داده های اختلاف جرم بر حسب زمان برای سیستم Air- در دمای C ˚05/60...................................................................................................................................................
5-5 : شیب منحنی داده های اختلاف جرم بر حسب زمان برای سیستم Air- در دمای C ˚95/15......................................................................................................................................
5-6 : شیب منحنی داده های اختلاف جرم بر حسب زمان برای سیستم Air- در دمای C 05/25.........................................................................................................................................
5-7 : شیب منحنی داده های اختلاف جرم بر حسب زمان برای سیستم Air- در دمای C ˚45/39......................................................................................................................................
5-8 : شیب منحنی داده های اختلاف جرم بر حسب زمان برای سیستم Air- در دمای C ˚05/60......................................................................................................................................
5-9 : مقایسه ی منحنی داده های ضرایب نفوذ تجربی حاصله آب مقطر و ضرایب نفوذ تجربی آب در مراجع برحسب دما.....................................................................................................................
5-10 : مقایسه ی منحنی داده های ضرایب نفوذ تجربی حاصله آمین آزید در برابر ضرایب نفوذ تجربی آب در مراجع برحسب دما.......................................................................................................
5-11 : منحنی داده های کسر مولی سوخت مایع آمین آزید در هوا در برابر شعاع انبارداری آن در دمای C ˚15/95..............................................................................................................................
5-12 : منحنی داده های کسر مولی سوخت مایع آمین آزید در هوا در برابر شعاع انبارداری آن در دمای C ˚05/25.............................................................................................................................
5-13 : منحنی داده های کسر مولی سوخت مایع آمین آزید در هوا در برابر شعاع انبارداری آن در دمای C ˚45/39.................................................................................................................................
5-14 : منحنی داده های کسر مولی سوخت مایع آمین آزید در هوا در برابر شعاع انبارداری آن در دمای C ˚05/60 ..............................................................................................................................
فهرست شکل ها
شماره صفحه عنوان
4-1 : میزان صعود مویینگی در یک لوله مویین در حالت معمول.....................................................
4-2: میزان صعود مویینگی بین دو صفحه با فاصله (D)....................................................................
4-3 : میزان صعود مویینگی بین دو لولۀ مویین هم مرکز و به شعاعهای ..........................
4-4 : لولۀ با قطر(16/6میلیمتر)................................................................................................................
4-5 : لولۀ با قطر(10میلیمتر)....................................................................................................................
4-6 :لولۀ با قطر(75/31میلیمتر)..............................................................................................................
4-7: نمای کلی از set up مورد استفاده...............................................................................................
4-8 : لولۀ نفوذ همرا با سه راهی اختناقی..............................................................................................
4-9 :کمپرسور فینی(230 OL)...............................................................................................................
4-10: فلومتر سری......................................................................................................................................
4-11: ترمومتر جیوه ای..............................................................................................................................
4-12: هیتر MR3001K.........................................................................................................................
4-13: ترازوMettler AE160...............................................................................................................
4-14: حمام آب............................................................................................................................................
4-15: قیف های شیشه ای........................................................................................................................
4-16: مگنت..................................................................................................................................................
4-17: تعیین فشار هوای خروجی از فلومتر............................................................................................
4-18: شمای کلی تجهیزات و دستگاه نفوذ تست اصلی.....................................................................
4-19: شمای کلی تجهیزات و دستگاه نفوذ در تست(1)....................................................................
4-20: شمای کلی تجهیزات و دستگاه نفوذ در تست(2)....................................................................
4-21: عنصر حجمی سیال به ابعاد ... ...............................................................................
چکیده
نکته اساسی پس از تولید یک سوخت مایع ، انبار داری آن است. متاسفانه تا کنون پارامترهای جامع و کاملی از سوی موسسات ایمنی ارائه نشده است که خاصیت انتقالی و ترموفیزیکی ضریب نفوذ یکی از عوامل بررسی نشده و جدید در این زمینه می باشد. نشتی احتمالی سوخت مایع از مخزن ایجاب می کند که ضریب نفوذ آن در هوا و شعاع انبارداری آن جهت ایمنی کاربران در منطقۀ نگهداری مخازن تعیین شود.
در این تحقیق یک مطالعه جامع جهت تعیین اندازه گیری ضریب نفوذ سوخت مایع آمین آزید جهت انبارداری آن انجام شده است. برای اندازه گیری ضریب نفوذ این سوخت مایع در هوا از روش استفان-ماکسول استفاده گردید. بدین منظور جهت کالیبره نمودن دستگاه از آب مقطر استفاده شد که ضرایب نفوذ آن در هوا و در فشار یک اتمسفر و در دما های مختلف جهت مقایسه موجود است. جهت بدست آوردن ضریب نفوذ این سیالات( آب مقطر و آمین آزید) دو روش ارائه شده است که به دنبال آن ضریب نفوذ محاسبه شده این سوخت در قانون دوم فیک تک بعدی جهت محاسبۀ حداقل شعاع انبارداری قرار داده میشود. هم چنین با تخمین معادلات تجربی برای سوخت مایع آمین آزید بهترین مدل ارائه می گردد.
واژ های کلیدی: سوخت مایع، انبارداری، ضریب نفوذ، آمین آزید، آب مقطر، استفان-ماکسول، شعاع انبارداری
مقدمه
زمانی یک واحد پالایشگاهی برشهای نفتی نظیر بنزین یا گاز مایع و یا یک واحد نظامی پیشرانه های موشکی از قبیل دی متیل هیدرازین نامتقارن (UDMH) و هیدرازین را ... تولید می کنند بر انبارداری درست و مناسب از آنها همت می گمارند. برای این منظور مراکز ایمنی، بهداشت و محیط(HSE) و انجمن بهداشت و ایمنی حرفه ای (OSHA) و سایر واحدها در کنار یکدیگر دستورالعمل هایی اتخاذ می نمایند که در برگیرندة یک سری از استانداردها وکد های بین المللی می باشد که می توان از خرابی ها و نشتی های پیش آمده جلوگیری کرد. استانداردهای بین المللی دقیقاً همان پارامترهای مهم بر مطالعه انبارداری سوخت های شیمیایی و نظامی می باشند. درپروژه¬های عملیاتی و فرآیندی و در برنامه های فضایی و دفاعی پارامترهای اصلی بر بررسی پیرامونی مخازن انبارداری سوختهای مایع یکسان می باشند ولی این موضوع برای برنامه های دفاعی ونظامی کمی دقیق تر و حساس تر است. این پارامترها شامل : دما، نوع و فشار گاز بالای مخزن نگهداری، جنس مخزن، نور، ناخالصی و رطوبت می باشند. یکی از پارامتر های مهم و البته بررسی نشده در این راستا ضریب نفوذ می باشد که موضوع این تحقیق می باشد. وقتی که مخزن سوخت دچار نشتی میشود، بعد از مدتی بر اثر گرادیان غلظت در محوطة انبارداری پخش می گردد و چون سوخت ها تمامیشان سمی می باشند برای سلامتی کاربران و اپراتورهای سایت بسیار خطرناک تلقی میشوند. ناگزیر ضروری است که مقوله مهمی به نام حداقل شعاع نفوذ انبارداری جهت حصار کشی برای این موضوع را در نظر داشت ولی با این حال مراکز ایمنی مانند انجمن ملی حمایتی آتش نشانی(NFPA) در سایر موارد( از قبیل آتش سوزی و انفجار) شعاع انفجار را برای مخزن سوخت در نظر می گیرند. بدین ترتیب با یافتن ضریب نفوذ هر پیشرانۀ خصوصاً سوخت مورد نظر یعنی آمین آزید می توان حداقل شعاع انبارداری را محاسبه نمود.
در اینجا جهت بدست آوردن ضریب نفوذ سوخت مایع آمین آزید در هوا، دستگاهها و روشهای ضریب نفوذ در حالت گازی بایستی به کار گرفته شوند تا بتوان ضریب نفوذ را بدست آورد. در تمامی مقالات و مراجع علمی مهندسی شیمی، مهندسی مکانیک و ابزار دقیق تعداد روشهای ضریب نفوذ در حالت گازی (چه مایع در گاز، یا جامد در گاز ویا گاز در گاز) در حدود20 تا 25 روش می باشد که می توان به مهمترین آنها از جمله: روش کروماتوگرافی گازی ، روش دو حبابی(دوبالنی)، روش تداخل سنجی هالوگرافیکی(تمام نگاری) و .... اشاره کرد. شایان ذکر است که روند نفوذ مایع در گاز و جامد در گاز دقیقاً مانند گاز در گاز می باشند چون حالات مایع و جامد باید به صورت گاز یا بخار در بیایند تا داخل توده هوا یا گاز نفوذ کنند. به همین دلیل دستگاه ها و روشهای ضریب نفوذ آنها یکی است و تنها در تئوری آنها فرق می باشد.
از بین روشها و با توجه به امکانات موجود در مرکز تحقیقات شیمی و مهندسی شیمی دانشگاه صنعتی مالک اشتر روش استفان- ماکسول(لولۀ تبخیری) انتخاب گردید. تکنیک استفان- ماکسول تکنیک بسیار ساده، و مبنای آن براساس نرخ تبخیر سیال در هوا می باشد. سرعت نفوذ در این روش ممکن است حتی نصف یک روز هم طول بکشد. صحت روش استفان- ماکسول به صورت مبهمی در مقالات گفته شده است که متاسفانه نمی توان آن را در محاسبات دخالت داد اما با این وجود خطا آن بیش از 5% گزارش شده است. در ابتدا جهت کالیبراسیون دستگاه ضروری است که از یک سیالی مانند آب مقطر که در مراجع ضرایب نفوذ آن در دماهای مختلف وجود دارد استفاده شود تا بتوان با اطمینان کامل به سراغ سوخت مایع مورد نظر رفت. نشتی مخزن سوختهای مایع خصوصاً آمین آزیدی ممکن است در دماهای مختلف اتفاق بیافتد به همین دلیل انتخاب این سیال کمک می کند که در چهار دمای مختلف فوق بتوان ضریب نفوذ این سوخت را محاسبه نمود. در آغاز آزمایش مهمترین کار، انتخاب لولۀ نفوذ یا لولۀ استفان- ماکسول می باشد که این عمل با تست مویینگی از سه قطر مختلفی از لوله ها انجام می شود. در این آزمایش جهت کمینه نگه داشتن ارتفاع صعود مویینگی می توان با افزایش قطر لوله آن را کاهش داد. به عبارتی دیگر سیال آزمایشی آب با کشش سطحی( 72) و سیال اصلی آمین آزید(با کشش سطحی 25) در لوله می توانند طبق نیروی چسبندگی و پیوستگی حالت تعقر پیدا و درون لوله صعود کنند که با افزایش قطر لوله این حالت تعدیل پیدا خواهد کرد. از طرفی با انتخاب قطر بالایی از لوله بایستی مراقب جریان همرفت بود. معذلک با برآیند خوبی ازاین دو پدیده و با توجه به مستندات علمی فوق، لولۀ انتخاب شده به قطرmm 32~ mm75/31 می باشد. مبنای آزمایش دراین تحقیق بصورت وزنی بوده و در هر3ساعت(3،6 و9 ساعت) نمونه از سیستم خارج نموده و توزین با ترازوی(gr0001/0) انجام میشود. اختلاف جرم بدست آمده( ) در هر 3 ساعت( ) با رابطۀ جرم حجمی به حجم کم شدۀ سیال( ) و به ارتفاع کم شده سیال( )تبدیل خواهد شد. در این فرآیند نفوذ، شار در جزء ساکن مد نظر است چون سرعت هوا بسیار کند در نظر گرفته شده است. بعد از یافتن ضریب نفوذ تجربی آمین آزید سعی میشود که با وجود اطلاعات بسیار محدود و اندک در مورد این ماده، آن را با معادلات تجربی مراجع تخمین زد تا بتوان مدل مناسبی برای مادۀ نشتی آمین آزیدی ارائه داد.
سپس برای تعیین شعاع انبارداری مخزن سوخت مورد نظر از معادلۀ توزیع غلظت یعنی قانون بقای جرم مادۀ سوختی استفاده میشود که با مفروضات خاصی به قانون دوم فیک تک بعدی تبدیل خواهد گشت. حل این معادله دیفرانسیلی پاره ای یک بعدی شعاع انبارداری مخزن را نتیجه می دهد. با حل معادله دیفرانسیلی می توان دریافت که بعد از نشت سوخت مایع آمین آزیدی هر نقطۀ که گرادیان غلظت آن صفر شود آن نقطه حداقل شعاع انبارداری مخزن آمین آزیدی جهت حصار کشی خواهد بود و طبیعتاً این نتیجه حاصل می شود که کاربر آن سوخت در واحد از نظر ایمنی مشکلی نخواهد داشت.
در این مطالعه هدف یافتن ضریب نفوذ سوخت جدیدی آمین آزید در هوا و پس از آن محاسبۀ شعاع انبارداری مخزن آن است.
در فصل 1 این تحقیق به اهمیت ضریب نفوذ در انبارداری مخازن سوختهای مایع پرداخته میشود که شامل پارامترهای موثر بر ذخیره¬سازی پیشرانه¬های مایع می باشد.
در فصل 2 به برخی از معادلات مربوط به تعیین ضریب نفوذ ملکولی در گازها در فشار پایین، به همراه خطاهای آنها اشاره شده است.
در فصل 3 دستگاه ها و روشهای ضریب نفوذ در حالت گازی به همراه خطاهای آنها شرح داده شده است.
در فصل 4 نحوه انجام آزمایشات و محاسبات و هم چنین معرفی فرمولها و رابطه های این آزمایش از قبیل رابطه شار و تابع کلی برای ضریب نفوذ و معادلۀ توزیع غلظت جهت یافتن شعاع انبارداری، آورده شده است. روش ارائه شده برای اندازه گیری ضریب نفوذ مایع(آب و آمین آزید) در گاز در فشار یک اتمسفر و در دماهای
(K1/289=C˚15/95)، (K2/298=C˚05/25)، (K6/312=C˚45/39) و (K2/333=C˚05/60) انجام شده است.
در فصل 5 انجام محاسبات برای هر دو سیال و نتایج بدست آمده مورد بررسی قرار گرفته و در فصل 6 اختصاص به نتیجه گیری و پیشنهادات دارد.