لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 14
تولید برق: انواع نیروگاه٬ انواع سوخت٬ آلاینده ها
5- تولید
مصرف جهانی انرژی هر ده سال یکبار دو برابر میشود و در این افزایش مداوم، مصرف انرژی الکتریکی بیشترین سهم را دارد، زیرا در همان مدت 4 برابر میشود. {504} منابع غنی نفت و گاز ایران به عنوان انرژی اولیه، تأمین کننده سوخت مورد نیاز برای تولید برق هستند و تنها بخش کوچکی از نیروی برق به کمک منابع تجدیدپذیر و برق آبی تولید میشود. این موضوع در تراز برق سال 1379 (جدول 1-5) بهخوبی نمایان است. در این تراز نکات زیر قابل ذکر است:
- همه ارقام به تراوات ساعت[1] تبدیل شده است.
- آمار و ارقام از کتاب های «آمار تفصیلی برق[2]» و «ترازنامه انرژی[3]» استخراج شده است.
- جمع تولید[4] به کمک هر دو منبع و به صورت جداگانه محاسبه شده است و مغایرت[5] مورد توجه قرار گرفته است.
- میزان و حجم تلفات تبدیل[6] و تلفات توزیع و انتقال[7] مشخص شده است.
جدول مذکور حاوی نکات بسیار مهمی به شرح زیر است:
1- ایران هنوز از نیروگاههای اتمی استفاده نمیکند.
2- انرژیهای تجدیدپذیر درحال حاضر تقریباً جنبه مطالعاتی دارد.
3- استفاده از منابع برق آبی بسیار محدود است.
4- درتبدیل نفت و گاز به برق، حدود 67 درصد انرژی قبل از تبدیل شدن به برق از دسترس خارج میشود.
5- علاوه بر رقم فوق، 8/4% از برق تولیدی، در همان بخش انرژی به مصرف میرسد.
6- پس از آنکه برق به شبکه انتقال و توزیع تحویل شد، بازهم شاهد 6/16% تلفات دیگر هستیم.
7- تنها حدود نیمی از ظرفیت نصب شده نیروگاهی مورد بهرهبرداری قرارمیگیرد.
8- صادرات برق فقط6/0 درصد میزان تولید است.
9- تنها حدود یک چهارم برق تولیدی در بخش صنعتی مورد استفاده قرار میگیرد.
بااینهمه روند توسعه در عرصه صنعت برق،در سالهای پسازانقلاب بسیارچشمگیر است. کافی است توجهکنیم که قدرت نصب شده نیروگاهها در پایان سال 1357 تنها 7024 مگاوات بود. {408} طی این سالها همه شاخصها منجمله میزان قدرت سرانه، تولید سرانه انرژی برق، و ضریب بار بهبود یافته و به ترتیب از 236 وات نفر، 545 کیلووات ساعت، و 9/56% به 512، 1906، 95/63% رسیدهاست. {114} نمودارهای 2-5 و 3-5 معرف این واقعیت هستند.پیشبینیها نشان میدهد که این روند توسعه، با سرعت بیشتری به پیش خواهد رفت. در بهار و تابستان سال 1380 تولید ناویژه برق به ترتیب 29739 و 36820 هزارمگاوات ساعت بود{629} که نسبت به سال 79 بهترتیب4% و9/7% رشد نشان میدهند. کل انرژی تولیدشده در سال 80، نزدیک به 127 تراوات ساعت بود. {643} انتظار میرود ظرفیت تولید تا پایان برنامه سوم به 39179 مگاوات و تا پایان سال 1388 به 42724 مگاوات{107} و تا سال 1400 به 96هزارمگاوات برسد.{33} هریک از این ارقام به ترتیب 4/10، 5/5، و 3/6 درصد رشد سالانه را پیشبینی میکنند.
مقایسه آماری شاخصهای عمده صنعت برق با کشورهای جهان نیز غرورآفرین است. البته ظرفیت سرانه ایران تقریباً از همه کشورهای عضو آژانس بینالمللی انرژی (بجز چند کشور نظیر مکزیک و ترکیه) کمتر است. (جدول4-5)
گذشته از جدول یاد شده و کشورهای آژانس بینالمللی انرژی، کشورهای تایوان، روسیه، قزاقستان، اوکراین، عربستان، رومانی، ونزوئلا، آفریقای جنوبی، مالزی، و آرژانتین رتبه بهتری بر پایه ظرفیت سرانه دارند.{107} میتوان گفت کشورهای بحرین، قبرس، فلسطین، کویت، عمان، قطر، امارات متحده عربی، لیبی، شیلی، پاراگوئه، پورتوریکو، ارمنستان، آذربایجان، بلاروس، استونی، گرجستان، قرقیزستان، لیتوانی، تاجیکستان، ترکمنستان، و ازبکستان هم ظرفیت سرانه بالاتری دارند.
اما تقریباً همه کشورهای دیگر جهان، بهویژه کشورهای واقع در شرق ایران، ظرفیت سرانهای کمتر از ایران دارند و طبیعی است که به دنبال واردات برق باشند. کشورهای ترکیه، عراق، سوریه، لبنان، اردن، افغانستان، پاکستان، بنگلادش، برمه، چین، هند، اندونزی، سنگاپور، تایلند، ویتنام، و کرهشمالی کشورهایی هستند که ظرفیت سرانهای پایینتر از ایران دارند، اکثراً بهمنابع انرژی دسترسی ندارند، و ایران میتواند از طریق خشکی با آنان ارتباط برقرار کند.
1-5- انواع نیروگاهها
بیشترین نیروگاههای جهان آبی یا حرارتی هستند. انرژیهای نو و تجدیدپذیر، حتی نیروگاههای آبی کوچک، بحث جداگانهای را میطلبند. مقصود از برق آبی دراین تقسیمبندی کلی، نیروگاههای بزرگ آبی است. نیروگاههای حرارتی نیز همه سوختهای احتراق پذیر، فسیلی و هستهای را شامل میشوند.
درواقع چیزی که مبنای طبقهبندی نیروگاهها قرار میگیرد، نوع سوخت آنها نیست، بلکه طراحی سیستم تولید برق نیروگاه مطرح است. یک نیروگاه بخار ممکن است با گاز، زغال سنگ یا سوختهای دیگر، و حتی با سوخت هستهای کارکند. اما نحوه عملکرد آن با نیروگاه گازی متفاوت است و در نتیجه کاربرد آن نیز متفاوت خواهدبود.
ترمودینامیک
طراحی، کارکرد و کارایی نیروگاههای مولد برق بهطور گستردهای برعلم ترمودینامیک متکیاست. قانون اول ترمودینامیک قانون بقای انرژی است که میگوید انرژی نه به وجود میآید و نه نابود میشود. انرژی سیستمی که تغییر حالت میدهد (یا در طی فرایندی تحول پیدا میکند) ممکن است در نتیجه تبادل با محیط، کم یا زیاد شود، و یا در درون سیستم از شکلی به شکل دیگر درآید.{112} بهعبارت سادهتر، ما میتوانیم سوخت را به گرما، و گرما را به کار تبدیل کنیم و از حرکت حاصله با استفاده از خواص سیمپیچ و مغناطیس، برق بهدست آوریم. البته این کار نه از طریق یک روند، بلکه به کمک یک چرخه صورت میگیرد زیرا لازم است سیستم نه یک بار، بلکه به صورتی پیوسته عمل کند. چرخه متشکل از تعدادی فرایند است که از حالت معینی شروع و به همان حالت ختم میشود. بهاینترتیب چرخه میتواند تا هنگامی که نیاز باشد بهطور نامحدود تکرارشود.
ما بیش از همه با دونوع انرژی، بهصورت گرما و کار، روبرو هستیم. قانون دوم ترمودینامیک، همارزی تبدیل این دو را نفی نمیکند، ولی برای آن حدی قائل است. کار، انرژی با ارزشتری است. کار را میتوان بهطور کامل و پیوسته به گرما تبدیل کرد، ولی عکس آن درست نیست. گرما را نمیتوان بهطور کامل و پیوسته به کار تبدیل کرد. بهعبارت دیگر گرما بهطور پیوسته یعنی بهطور چرخهای، کاملاً قابل تبدیل به کار نیست. (هرچندکه در یک فرایند میتواند چنین باشد.) بخشی از گرما را که نمیتوان به اینترتیب به کار تبدیل کرد، انرژی دسترسناپذیر مینامند که بایستی پس از انجام کار، بهعنوان گرمای با کیفیت نازل دفع شود.
انتخاب بین هزینه سرمایهگذاری و هزینه سوخت
این همان بخش بزرگی از انرژی است که در مرحله تولید الکتریسیته، در نیروگاهها از دسترس خارج میشود و در ترازنامه انرژی تحت عنوان تلفات تبدیل ذکر شدهاست. پیچیدهتر کردن چرخه تولید الکتریسیته و استفاده از فوق گرما دادن، باز گرمایش، بازیابی، پیشگرمکن و نظایر آن، روشهایی است که با محاسبات اقتصادی در مورد این یا آن نیروگاه تحت این یا آن شرایط به کار گرفته میشود. مثلاً در چرخه رانکین، “اختلاف دمای بسیار کوچک در نقطه تنگش منجر به اختلاف دمای کلی کم و در نتیجه بازگشت ناپذیری کمتر، ولی مولد بخار بزرگتر و گرانتر میشود. اختلاف دمای بسیار بزرگ در نقطه تنگش منجر به مولد بخار کوچک و ارزان، ولی اختلاف دمای کلی و بازگشتناپذیری بیشتر میشود که در این صورت بازده نیروگاه کاهش مییابد. اقتصادی ترین اختلاف دما در نقطه تنگش با بهینه سازی به دست میآید که در طی آن هم هزینههای ثابت (براساس هزینههای سرمایهگذاری) و هم هزینههای جاری (بر اساس بازده و در نتیجه هزینه سوخت) در محاسبه واردمیشوند.” {112}
در مورد توربینهای گازی نیز با افزایش دمای ورودی، فشار و در نتیجه بازده بالا میرود. البته هزینه سرمایهگذاری نیز بالا میرود اما کاهش مصرف سوخت، به سرعت این اختلاف هزینه سرمایهگذاری را باز میگرداند.
نیروگاه دیزلی
رودلف دیزل (1913- 1858) در پاریس از والدین آلمانی به دنیا آمد. او در سال 1893 و در آلمان موتور اختراعی را بهنام خودش به ثبت رساند. چرخه ایدهآل او سیستم بستهای به شکل زیر است:این چرخه تشکیل میشود از فرایند تراکم ایدهآل بیدررو (بدون تبادل گرما)1-2؛ فرایند فشار ثابت گرماگیر 2-3؛ فرایند انبساط ایدهآل بیدررو 3-4؛ فرایند حجم ثابت گرماده 4-1 که سرانجام چرخه را به حالت یک باز میگرداند.
در نیروگاه دیزل با استفاده از سوخت گاز یا مایع در سیلندرها، انرژی مکانیکی بهدست میآید که توسط ژنراتور به انرژی الکتریکی تبدیل میگردد. نیروگاه دیزل برخلاف دیگر نیروگاههای حرارتی و آبی، فاقد توربین میباشد.
این سادهترین نوع نیروگاه است که به راحتی نصب و راهاندازی میشود. اگر وقت صرف شده جهت نصب و راهاندازی یک واحد نیروگاه دیزلی را یک فرض کنیم، نیروگاه گازی 10، نیروگاه بخاری 20، و نیروگاه آبی 90 واحد زمان لازم خواهدداشت.{507} در ایران نیز نخستین نیروگاه، یک واحد 400 کیلوواتی دیزل بود که در زمان مشروطه توسط حاج امینالضرب در سال 1285 شمسی در خیابان چراغ برق تهران (امیرکبیر) راهاندازی شد. {505} جای تأسف است که پس از آن 53 سال طول کشید تا نیروگاه حرارتی طرشت راهاندازی شود.
امروزه حتی اگر نیروگاههای دیزلی را بخواهیم به طور کامل کناربگذاریم، بازهم استفاده از دیزل ژنراتور در نیروگاهها ضروری است. زمانی که شبکه سراسری Black Outمیشود، برق اولیه به وسیله یک دیزل ژنراتور تأمین میگردد که به نوبه خود توربین گازی را با برق 380 ولت ACبه عنوان Prime Mover راه میاندازد. توربین گازی به نوبه خود بار لازم برای راهاندازی توربین های بخار را تأمین میکند.{116}
نیروگاه بخار
ویلیام جان ام رانکین(1872-1820) استاد مهندسی ساختمان در دانشگاه گلاسکو بود. وی یکی از پیشکسوتان علم ترمودینامیک و نخستین شخصی بود که به تدوین و نگارش این علم همت گماشت.{112} چرخهای که او طراحی کرد، بنام چرخه رانکین معروف است که یک چرخه مایع و بخار بهشمار میآید.
نیروگاههای بخار معمولاً نیروگاههای بزرگی هستند که به سرمایه و زمان زیادی برای نصب نیاز دارند. این نیروگاهها به دلیل داشتن ضریب ظرفیت بالا، برای تأمین بار پایه بسیار مناسب میباشند. محاسبات نشان میدهد برای یک نیروگاه بخار 1000 مگاواتی، سالانه 19 میلیون مترمکعب آب لازم است.{505} لذا این نیروگاهها باید نزدیک منابع آب تأسیس شوند.
نیروگاه گازی
نیروگاه گازی طبق چرخه برایتون و با استفاده از گاز حاصل از احتراق، توربین را به گردش درمیآورد. مهمترین مزایای نیروگاه گازی در مقایسه با نیروگاه بخار به شرح زیر است:
1- نیروگاه توربین گازی، در مقایسه با نیروگاه بخار کوچکتر است، وزن کمتری دارد و هزینه اولیه آن برای تولید هرواحد توان از هزینه مربوط به نیروگاه بخار کمتر است.{112}
2- مدت زمان لازم برای تحویل توربین گازی نسبتاً کوتاه است و میتوان آن را سریعاً نصب کرد و مورد استفاده قرارداد.
3- راهاندازی و توقف توربینهای گازی ساده است و در عرض ده دقیقه این اعمال انجام میگیرد.{116}
4- آلودگی کمتری نسبت به توربینهای دیگر دارد و به همین جهت در همه جا میتوان آن را نصب کرد.
5- اکثر توربینهای گازی با هوا خنک میشوند و در نتیجه نیاز به آب و تصفیه خانه ندارند.
اما این نیروگاه معایب مهمی هم به شرح زیر دارد:
1- بازده چرخه برایتون، اصولاً به اندازه بازده چرخه رانکین(نیروگاه بخار) نیست.
2- قطعات یدکی آن گران است.
توأم بودن هزینه سرمایهگذاری پایین و بازده پایین در توربین گازی موجب میشود که از آن عمدتاً بهعنوان نیروگاه تأمین بار پیک استفاده شود و طبعاً از چنین نیروگاهی انتظار نمیرود بیش از 1000 تا 2000 ساعت در سال در مدار باشد. بدیهی است که برای چنین مواردی، استفاده از نیروگاههای بزرگ بخار، غیراقتصادی خواهدبود.
نیروگاه سیکل ترکیبی
نیروگاه چرخهترکیبی به نیروگاهی گفته میشود که درآن هم در توربین گازی و هم در توربینبخار، قدرت تولید میشود. بهاینترتیب از انرژی بسیار زیاد گازهای خروجی توربین، برای تولید بخار جهت یک نیروگاه بخار استفاده میشود. این روش کاملاً عملی است زیرا توربین گاز، یک ماشین با دمای نسبتاً بالا و توربین بخار، یک ماشین با دمای نسبتاً پایین است. این کارکرد توأم توربین گازی در«طرف گرم» و
دانلود تحقیق تولید برق انواع نیروگاه٬ انواع سوخت٬ آلاینده ها