چکیده :
یکی از مهمترین عوامل در شبکه های آبیاری که تأثیر تعیین کننده ای بر عملکرد هیدرولیکی کانال و سازه های وابسته دارد، وجود جریان های غیرماندگار است . وجود جریان های غیرماندگار باعث تغییرات دبی و عمق در زمان و مکان در سرتاسر شبکه و سازه های آبی موجود خواهد شد که تبعات گسترده هیدرولیکی در شبکه ایجاد می کند. همچنین از جمله عوامل تأثیرگذار بر بهبود عملکرد کا نال های آبیاری اجرای دقیق برنامه های تحویل و توزیع آب در کانال ها از طریق طراحی سازه های متعدد در طول شبکه می باشد . وظیفه تعین میزان تنظیمات سازه ها در شبکه کانال های آبیاری و عملکرد سازه بعهده سیستم کنترل است . جهت مطالعه و بررسی رفتار هیدرولیکی شبکه در مقابل با سیستم های کنترل و سازه ها و مطالعه و ارزیابی عملکرد جریانهای غیرماندگار، یکی از موثرترین روش ها، شبیه سازی ریاضی آنهاست . با توجه به طبیعت جریان غیرماندگار، و تعامل با این سیستم ها و استفاده از مدل های هیدرودینامیکی اجتناب ناپذیر است . برای تحقق این امر تهیه رابطه (دبی -اشل ) سیستم های کنترل و سازه های مربوطه به صورت تلفیقی با یک مدل هیدرودینامیکی ضروری است . اگر چه مدل های مذکور با امکان ارزیابی عملکرد کانالها اطلاعات مناسبی را برای مدیریت جریان غیر ماندگار فراهم می نمایند اما دستیابی به مناسبترین شیوه های مدیریتی نیازمند بهره گیری از روش های مؤثر و کارآمد بهینه سازی است .لذا در این تحقیق برای شبیه سازی کانال آبرسان و سازه های آن از مدل ۱۱ MIKE استفاده شد. برای آزمون و ارزیابی مدل، کانال خداآفرین از شبکه خداآفرین انتخاب شده است و با توجه به داده های محاسباتی پروفیل سطح آب مدل کالیبره شد و صحت آن مورد تأیید قرارگرفت. سپس با توجه به قابلیت مدل هیدرولیکی ۱۱ MIKE، ابتدا با حساسیت سنجی پارامترهای موثر در مدل درک صحیحی از رفتار جریان در شبکه بدست آمده و با شناسایی اجزای با حساسیت هیدرولیکی بیشتر پارامترهایی نظیر ضریب زبری مانینگ که معرف میزان افت انرژی و زبری کانال می باشد، بازه های مختلف شبکه کانال آبرسان به صورت مستقل یا وابسته با استفاده از روش های نوین بهینه سازی و الگوریتم بهینه سازی Shuffled تعیین شد. نتایج بدست آمده راهکارهای مدیریتی بهره برداری از جریانهای غیرماندگار در کانال های آبیاری و سازه های آن مورد بحث و بررسی قرار گرفت که در این پایان نامه ارائه شده است.
چکیده 1
مقدمه 2
فصل اول : کلیات 3
1)تعریف مسأله 4 -1
2)ضرورت انجام تحقیق 6 -1
3)اهداف تحقیق 8 -1
فصل دوم :مروری بر تحقیقات گذشته 9
-1 مقدمه 10 -2
-2 بررسی سوابق مطالعات جریانهای غیر ماندگار در شبکههای آبیاری از -2
دیدگاه بهرهبرداری و کنترل
11
-3 مشخصات سیستمهای کنترل 12 -2
-4 نوع کنترل 14 -2
-1 کنترل پس خورد 14 -4 -2
-2 کنترل پیش خورد 15 -4 -2
-3 کنترل ترکیبی 17 -4 -2
-5 جهت کنترل 17 -2
-6 تکنیک های طراحی 19 -2
19 p -1-6 تکنیک -2
23 MIKE -7 مدل های هیدرودینامیک و مدل 11 -2
-8 مدلهای بهینه سازی با شبیهسازی هیدرودینامیک 24 -2
و معرفی AutoCal و معرفی مدل MIKE فصل سوم : معرفی مدل 11
منطقه طرح
31
32 MIKE 1معرفی مدل 11 -3
ز
-1 حالات جریان 33 -1 -3
-2 تئوریهای بکارگرفته در مدل 34 -1 -3
-3 روش حل معادلات 36 -1 -3
-4 شرایط مرزی 40 -1 -3
-1-4 وضوح 40 -1 -3
-2-4 انتخاب شرط مرزی 40 -1 -3
-3-4 توصیف شرایط مرزی 40 -1 -3
-5 مقاومت بستر 43 -1 -3
-1-5 نسبت مقاومتی 44 -1 -3
-2-5 فاکتور مقاومت 44 -1 -3
-3-5 شعاع مقاومت 44 -1 -3
-6 شرایط پایداری 46 -1 -3
-1-6 ملا ک کورانت 47 -1 -3
-2-6 ملاک سرعت 47 -1 -3
-7 گام زمانی 48 -1 -3
-8 نحوه تعریف مقاطع عرضی 48 -1 -3
-9 شرایط اولیه 50 -1 -3
-10 افت انرژی 51 -1 -3
52 AutoCal 2)بخش دوم معرفی نرمافزار کالیبراسیون و بهینهسازی -3
53 AutoCal -1 راه اندازی برنامه -2 -3
53 Simulation Specification -2 منوی -2 -3
58 Model Parameters -3 منوی -2 -3
60 Objective Function -4 منوی -2 -3
-5 بهینه سازی 63 -2 -3
ح
63 Optimization Method -1-5 منوی -2 -3
68 Save Output File -6 منوی -2 -3
-7 خروجی های برنامه 69 -2 -3
-3 بخش سوم معرفی منطقه طرح 69 -3
فصل چهارم : اجرای مدل کانال آبرسان 72
-1 تهیه مدل 73 -4
-2 تعریف سازه ها 78 -4
-1 دریچه کنترل بالادست آمیل 80 -2 -4
-1-1 کاربردها و فواید 81 -2 -4
-2-1 حذف سرریز آّب 81 -2 -4
-3-1 مفاهیم عملکرد 82 -2 -4
-4-1 مشخصات هیدرولیکی 82 -2 -4
-5-1 کاهش 83 -2 -4
-6-1 کنترل کانال از بالادست 83 -2 -4
-2 مدلسازی آبگیرها 88 -2 -4
-3 مدلسازی سرریزها 90 -2 -4
فصل پنجم : ارائه نتایج 93
مقدمه 94
-1-5 تعریف سناریو 94
-2-5 آنالیز حساسیت 99
-1-2-5 کاربرد حساسیت هیدرولیکی در تعین دقت مورد نیاز برای کنترل سطح
آب
99
-2-2-5 کاربرد حساسیت هیدرولیکی در بررسی عملکرد هیدرولیکی سیستم
آبیاری
100
-3-2-5 معرفی شیوه آنالیز حساسیت و بررسی آن بر اساس تحقیقات قبلی 100
ط
-4-2-5 روند حل در این تحقیق 104
-3-5 بهینه سازی 108
-1-3-5 مقدمهای بر مدلهای بهینهسازی 108
-2-3-5 روش های بهینه سازی 109
111 SCE -3-3-5 الگوریتم
112 SCE -4-3-5 پارامترهای الگوریتم
-5-3-5 معیارهای توقف 112
112 SCE -6-3-5 مکانیزم الگوریتم
114 CCE -7-3-5 مکانیزم الگوریتم
116 AutoCal -8-3-5 بهینهسازی با مدل
-9-3-5 روش مونت کارلو 123
-10-3-5 تجزیه و تحلیل نتایج بهینهسازی 126
فصل ششم : نتیجه گیری و پیشنهادات 128
نتیجه گیری 129
پیشنهادات 130
پیوست ها 131
با توجه به نفوذ روز افزون سیستم های هیدرولیکی در صنایع مختلف وجود پمپ هایی با توان و فشار های مختلف بیش از پیش مورد نیاز است . پمپ به عنوان قلب سیستم هیدرولیک انرژی مکانیکی را که توسط موتورهای الکتریکی، احتراق داخلی و ... تامین می گردد به انرژی هیدرولیکی تبدیل می کند. در واقع پمپ در یک سیکل هیدرولیکی یا نیوماتیکی انرژی سیال را افزایش می دهد تا در مکان مورد نیاز این انرژی افزوده به کار مطلوب تبدیل گردد.
فشار اتمسفر در اثر خلا نسبی بوجود آمده به خاطر عملکرد اجزای مکانیکی پمپ ، سیال را مجبور به حرکت به سمت مجرای ورودی آن نموده تا توسط پمپ به سایر قسمت های مدار هیدرولیک رانده شود.
حجم روغن پر فشار تحویل داده شده به مدار هیدرولیکی بستگی به ظرفیت پمپ و در نتیجه به حجم جابه جا شده سیال در هر دور و تعداد دور پمپ دارد. ظرفیت پمپ با واحد گالن در دقیقه یا لیتر بر دقیقه بیان می شود.
نکته قابل توجه در در مکش سیال ارتفاع عمودی مجاز پمپ نسبت به سطح آزاد سیال می باشد ، در مورد روغن این ارتفاع نباید بیش از 10 متر باشد زیرا بر اثر بوجود آمدن خلا نسبی اگر ارتفاع بیش از 10 متر باشد روغن جوش آمده و بجای روغن مایع ، بخار روغن وارد پمپ شده و در کار سیکل اختلال بوجود خواهد آورد . اما در مورد ارتفاع خروجی پمپ هیچ محدودیتی وجود ندارد و تنها توان پمپ است که می تواند آن رامعین کند.
پمپ ها در صنعت هیدرولیک به دو دسته کلی تقسیم می شوند :
پمپ ها با جا به جایی غیر مثبت : توانایی مقاومت در فشار های بالا را ندارند و به ندرت در صنعت هیدرولیک مورد استفاده قرار می گیرند و معمولا به عنوان انتقال اولیه سیال از نقطه ای به نقطه دیگر بکار گرفته می شوند. بطور کلی این پمپ ها برای سیستم های فشار پایین و جریان بالا که حداکثر ظرفیت فشاری آنها به 250psi تا3000si محدود می گردد مناسب است. پمپ های گریز از مرکز (سانتریفوژ) و محوری نمونه کاربردی پمپ های با جابجایی غیر مثبت می باشد.
پمپ های با جابجایی مثبت : در این پمپ ها به ازای هر دور چرخش محور مقدار معینی از سیال به سمت خروجی فرستاده می شود و توانایی غلبه بر فشار خروجی و اصطکاک را دارد . این پمپ ها مزیت های بسیاری نسبت به پمپ های با جابه جایی غیر مثبت دارند مانند مانند ابعاد کوچکتر ، بازده حجمی بالا ، انعطاف پذیری مناسب و توانایی کار در فشار های بالا ( حتی بیشتر از psi)
پمپ ها با جابه جایی مثبت از نظر ساختمان :
1- پمپ های دنده ای
2 - پمپ های پره ای
3- پمپ های پیستونی
پمپ ها با جابه جایی مثبت از نظر میزان جابه جایی :
1- پمپ ها با جا به جایی ثابت
در یک پمپ با جابه جایی ثابت (Fixed Displacement) میزان سیال پمپ شده به ازای هر یک دور چرخش محور ثابت است در صورتیکه در پمپ های با جابه جایی متغیر (Variable Displacement) مقدار فوق بواسطه تغییر در ارتباط بین اجزاء پمپ قابل کم یا زیاد کردن است. به این پمپ ها ، پمپ ها ی دبی متغیر نیز می گویند.
شامل 11 صفحه فایل word
پروژه آمایش سرزمین با استفاده از سیستم اطلاعات جغرافیایی (GIS) ، فایل ورد 30 صفحه ، همراه با کلیه توضیحات ، قایل استفاده در رشته های منابع طبیعی ، محیط زیست، جغرافیا و .....saman.badie84@gmail.com
چکیده:
در حین سیلاب های بزرگ رسوبات درشت دانه رودخانه ها که در مواقع عادی امکان حمل آنها وجود ندارد حرکت به سمت پایین دست را آغاز می کنند. یکی از عوامل مهم این حرکت بالا بودن آبدهی رودخانه ها و سرعت جریان آنها است ، بنابراین با اندازه گیری قطر رسوبات بجای مانـده در رودخانه ها می توان حداکثر دبی رخ داده در طی سیلاب های بزرگ را تخمین زد.
هدف از این تحقیق ارائه روشی مناسب برای برآورد دبی جریان در طی سیلاب های گذشته با استفاده از شرایط جابجایی ذرات بسیار درشت بستر رودخانه ها در طی وقوع سیلاب از روش های هیدرولیکی است. برای انجام این تحقیق روش های مختلف تجربی و تئوری برای تعیین آستانه سرعت جریان مورد نیاز برای جابجا کردن رسوبات درشت دانه برسی شده است سپس از روش های مختلف هیدرولیکی عمق جریان برآورد میشود و از حاصلضرب این دو دبی پیک سیلاب حرکت دهنده تخته سنگ های بسیار درشت محاسبه میشود. این بررسی در ایستگاه هیدرومتری سولقان انجام گردیده است. با توجه به قطر متوسط بزرگترین تخته سنگ های موجود رودخانه، آستانه دبی جریان در حین سیلاب های جابجا کننده آنها محاسبه گردیده و محدوده آن نیز برای روش های مختلف محاسبه شده است.
مقدمه:
یکی از مهمترین معیارهای طراحی سازههای هیدرولیکی سدها نظیر سرریزها، تعیین دبی طراحی آنها است. دبی طراحی با استفاده از محاسبات هیدرولوژیکی به دست می آید. یکی از روشهای کنتـرل دبپی حداکثر رودخانه ها که تاکنون در آنها رخ داده است استفاده از روشهای حمل مواد بستر رودخانه ها میباشد. در واقع با استفاده از قطر و یا وزن حداکثر مواد رسوبی رودخانه ها و همچنین مشخصات هندسی مقطع رودخانه میتوان به دبی رودخانه در هنگام حمل آن مواد پی برد و بهعنوان معیاری برای از آن استفاده نمود. کنترل حداکثر سیل محتمل از آن استفاده نمود.
حداکثر سیلاب محتمل، بزرگترین سیلابی را گویند که احتمال رخداد آن در یک رودخانه وجود دارد. از روشهای هیدرولوژیکی و تحلیل فراوانی وقایع میتوان مقدار آن را محاسبه کرد. ولی همواره این سؤال وجود دارد که آیا این مقدار سیلاب محاسبه شده کوچکتر از واقعیت نمی باشد؟
برای پاسخگویی به این سؤال میتوان از روشهای هیدرولیکی در حرکت رسوبات بهره گرفت. قطر ذرات بستر یا مورفولوژی کف رودخانه ، توان جریان و یا توان ویژه بحرانی که خود به عواملی نظیر دبی عبوری، شیب سطح آب ، تنش برشی و سطح مقطع رودخانه وابسته بوده و در این تحقیق از آنها بهره گرفته خواهد شد.
فهرست مطالب:
چکیده
مقدمه
فصل اول: کلیات
۱-۱-طرح مسئله
۱-۲-هدف از انجام تحقیق
۱-۳-روش کار و تحقیق
فصل دوم:
۲-۱-تحقیقات تاریخچه سیلابهای گذشته
۲-۲-تعیین آستانه حرکت
۲-۲-۱-تعریف آستانه حرکت
۲-۲-۲-مطالعات گذشته در مورد آستانه حرکت
۲-۲-۳-روش های مختلف تعیین آستانه حرکت
۲-۲-۳-۱- روش دبی واحد بحرانی qc
۲-۲-۳-۲-روش تنش برشی
۲-۲-۳-۳-روش سرعت
۲-۲-۳-۴-توان جریان
۲-۲-۳-۵-ارتباط دبی و طول انتقال رسوبات
۲-۳-خلاصه ای از مطالعات لنزی و همکارانش در مورد آستانه حرکت رسوبات
۲-۴-خلاصه ای از مطالعات لنزی در مورد طول انتقال ذرات حین سیلاب
۲-۵-خلاصه ای از مطالعات پتیت و همکارانش در سال ۲۰۰۵ روی توان واحد جریان
فصل سوم: خصوصیات فیزیکی آب و رسوب
۳-۱-خصوصیات آب
۳-۲-خصوصیات ذرات رسوب
بازسازی دبی پیک با استفاده از روش پالئوهیدرولوژی
۳-۳-بازسازی دبی پیک با استفاده از شواهد
۳-۳-۱-بررسی نشانه های سطوح دیرینه
۳-۳-۲-محاسبه دبی با استفاده از شواهد سطوح دیرینه
۳-۳-۳-نمونه ای از بازسازی دبی پیک در انگلستان
۳-۴-با استفاده از سایز تخته سنگ های ته نشین شده
۳-۴-۱-بازسازی سرعت
۳-۴-۱-۱-روش های تئوری
۳-۴-۱-۲-روش های تجربی
۳-۴-۲-بازسازی عمق متوسط سیلاب
۳-۴-۳-روابط تنش برشی
۳-۴-۴-روابط توان جریان
۳-۵-حوضه مورد مطالعه
۳-۵-۱-معرفی حوضه آبریز و رودخانه کن
۳-۵-۲-برداشت های میدانی
فصل چهارم:
۴-۱-سرعت متوسط جریان
۴-۱-۱-تجزیه و تحلیل روابط مختلف سرعت متوسط جریان در آستانه حرکت ذرات
۴-۱-۲-استفاده از انحراف معیار سرعت های برآورد شده برای تعیین محدوده سرعت جریان
۴-۱-۳-مقایسه روابط تجربی و تئوریک سرعت متوسط جریان با استفاده از روش تفاضل نسبی
۴-۱-۴-مقایسه روابط تجربی و تئوریک سرعت متوسط جریان برای حوضه مورد مطالعه
۴-۲-تجزیه و تحلیل روابط عمق جریان
۴-۲-۱-تجزیه و تحلیل روابط مختلف عمق متوسط و دبی در واحد عرض جریان در آستانه حرکت ذرات
۴-۲-۲-تعیین پارامترهای مورد استفاده در تعیین عمق
۴-۲-۲-۱-تعیین مقدار n در روابط مانینگ
۴-۲-۲-۲-تعیین تنش برشی بدون بعد در برآورد عمق با استفاده از پارامترشیلدز
۴-۲-۲-۳-تعیین حدود تنش برشی در برآورد عمق با استفاده از روش تنش برشی
۴-۲-۲-۴-تعیین حدود توان واحد جریان در برآورد عمق با استفاده از روش توان واحد جریان
۴-۲-۳-مقایسه روابط مختلف برآورد عمق جریان
۴-۲-۴-تعیین حدود عمق متوسط
۴-۲-۴-۱-استفاده از روش تفاضل نسبی
۴-۲-۴-۲-استفاده از روش کمترین مربعات برای محاسبه بهترین حالت
۴-۲-۴-۳-نتایج حاصل از برسی مطالعات موردی و حذف تعدادی از موارد
۴-۲-۴-محاسبه عمق متوسط و دبی واحد جریان در حوضه کن
فصل پنجم: نتیجه گیری و پیشنهادات
۵-۱-نتایج حاصل از بررسی نمودارهای سرعت جریان
۵-۲-نتایج حاصل از بررسی نمودارهای عمق جریان
۵-۳-نتایج حاصل از بررسی مطالعه موردی و حذف تعداد موارد مورد مطالعه
۵-۴-حساسیت
۵-۵-پیشنهادات
منابع و مأخذ
فهرست منابع فارسی
فهرست منابع لاتین
چکیده انگلیسی
برآورد رسوب و تعیین رابطه ای که بتواند دقیق ترین برآورد را داشته باشد همواره یکی از مهم ترین مسایل در زمینه مهندسی آب و سازه های هیدرولیکی، برای مدیریت بهتر منابع آب و آبهای ذخیره شده در مخازن سدها بوده است. برای تعیین رابطه مناسب در هر منطقه باید شرایط منطقه مورد مطالعه را با شرایطی که هر یک از روابط در آن شکل گرفته اند و با در نظر گرفتن محدودیت اطلاعات و داده ها که ممکن است در منطقه مورد مطالعه وجود داشته باشد، به دقت مقایسه و بررسی کرد تا بتوان به جواب مناسب تر و منطقی تری که به واقعیت نزدیک باشد دست یافت.
در این تحقیق، تعدادی از معادلات بار بستر و بار معلق و بار کل به صورت مطالعه موردی برای رودخانه دوغ در استان گلستان مورد مطالعه و بررسی قرار گرفتند و همچنین تحلیل حساسیت روابط به پارامترهای موثر در انتقال رسوب مانند دبی، سرعت و دانه بندی هم مورد بررسی قرار گرفتند تا بررسی شود که کدامیک از روابط به خطای ناشی از اندازه گیری، حساسیت بیشتری دارند.
با در دست داشتن بار معق اندازه گرفته شده، رابطه باگنولد به عنوان مناسب ترین رابطه بار معلق برای این منطقه انتخاب گردید. از طرفی با توجه به در دست نبودن اندازه گیری های مربوط به بار بستر و بار کل، از مقایسه خود روابط با هم با توجه به ویژ گی های هر رابطه، روابطی که ممکن است مناسب باشند، مشخص شدند. در تحلیل حساسیت هم روابطی که بیشترین و کمترین حساسیت را داشتند مشخص شدند. روابطی که دارای حساسیت بیشتری هستند باید در شرایطی مورد استفاده قرار بگیرند که اندازه گیری ها از دقت بالایی برخوردارند و در غیر اینصورت نتیجه بدست آمده از این روابط به هیچ وجه قابل اعتماد نمی باشد.
مهندسین هیدرولیک و زمین شناس طی دو قرن اخیر، حرکت مواد رسوبی در رودخانه ها را مورد بررسی قرار داده اند، چرا که رفتار مواد رسوبی، در هیدرولیک رودخانه و تغییر مورفولوژی آن حایز اهمیت است. طبیعت پیچیده انتقال رسوب و وابستگی آن به شرایط طبیعی، علم انتقال رسوب را به رشته ای تجربی و یا دست کم نیمه تجربی تبدیل کرده است.
برآورد رسوب و تعیین رابطه ای که بتواند دقیق ترین برآورد را داشته باشد همواره یکی از مهم ترین مسایل در زمینه مهندسی آب و سازه های هیدرولیکی، برای مدیریت بهتر منابع آب و آبهای ذخیره شده در مخازن سدها بوده است و تحقیقات بسیاری در این زمینه صورت گرفته ولی با وجود گذشت سالها تحقیق و بررسی در این زمینه هنوز رابطه ای که بتواند این مهم را برآورده کند وجود ندارد و اصولا این که انتظار داشته باشیم که به چنین رابطه ای دست یابیم امری غیر ممکن است
چرا که شرایط هیدرولیکی و طبیعی و آزمایشگاهی که هریک از روابط انتقال در آن شکل گرفتند نمی تواند برای همه مناطق و شرایط پاسخگو باشد و برای دستیابی به رابطه ای که میزان برآورد بهتری به ما بدهد باید شرایط منطقه مورد مطالعه را با شرایطی که هر یک از روابط در آن شکل گرفته اند و با توجه به فرضیاتی که بر اساس آن بنا نهاده شده اند و محدوده کاربردی که دارند و با در نظر گرفتن محدودیت اطلاعات و داده ها که ممکن است در منطقه مورد مطالعه وجود داشته باشد،
به دقت مقایسه و بررسی کرد تا شاید بتوان به جواب مناسب تر و منطقی تری که به واقعیت نزدیک باشد دست یافت و به همین دلیل است که هیچکدام از توابع انتقال رسوب ارایه شده تاکنون نتوانسته اند کاملا در مجامع مهندسی پذیرفته شوند. چرا که هیچیک قادر به تخمین و محاسبه دقیق نرخ انتقال رسوب نیستند. این عدم دقت در نتایج حاصل از معادلات، در رودخانه هایی که تحت تاثیر شرایط خاص جوی و طبیعی قرار دارند، آشکارتر است.
چکیده 1
مقدمه 2
1-1) هدف 3
1-2) پیشینه تحقیق 5
1-3) روش کار و تحقیق 12
مقدمه 13
2-1) انتقال بار بستر
2-2) روابط بار بستر
2-2-1) رابطه دوبویز
2-2-2) رابطه شیلدز
2-2-3) رابطه کالینسکی
2-2-4) رابطه چانگ سایمونز و ریچاردسون
2-2-5) رابطه میر پیتر
2-2-6) رابطه میر پیتر و مولر
2-2-7) رابطه شاکلیج1934
2-2-8) رابطه شاکلیج 1943
2-2-9) رابطه اینشتین
2-2-10) رابطه ونونی و بروکس
2-2-11) رابطه اینشتین براون
2-2-12) رابطه راتنر
2-2-13) رابطه فریجلینک
2-2-14) رابطه بایکر
2-2-15) رابطه ون راین
2-2-16) رابطه باگنولد
2-2-17) رابطه کیسی
2-3) بار معلق
2-4) روابط بار معلق
2-4-1) رابطه لین و کالینسکی
2-4-2) رابطه اینشتین
2-4-3) رابطه بروکس
2-4-4) رابطه چانگ سایمونز و ریچاردسون
2-4-5) رابطه باگنولد
2-4-6) رابطه ون راین
2-5) انتقال بار کل
2-6) روابط بار کل
2-6-1) رابطه توفالتی
2-6-2) رابطه باگنولد
2-6-3) رابطه انگلوند و هانسن
2-6-4) رابطه ایکرز و وایت
2-6-5) رابطه یانگ
2-6-6) رابطه لارسن
2-6-7) رابطه کلبی
2-6-8) رابطه شن و هیونگ
2-6-9) رابطه کریم و کندی 13
3-1) مشخصات رودخانه دوغ
3-2) مشخصات منحنی های دانه بندی منطقه
3-3) شکل مقطع عرضی رودخانه 69
4-1) روش محاسبه بار بستر
4-1-1) رابطه دوبویز
4-1-2) رابطه شیلدز
4-1-3) رابطه کالینسکی
4-1-4) رابطه چانگ سایمونز و ریچاردسون
4-1-5) رابطه میر پیتر
4-1-6) رابطه میر پیتر و مولر
4-1-7) رابطه شاکلیج1934
4-1-8) رابطه شاکلیج 1943
4-1-9) رابطه اینشتین
4-1-10) رابطه ونونی و بروکس
4-1-11) رابطه اینشتین براون
4-1-12) رابطه راتنر
4-1-13) رابطه فریجلینک
4-1-14) رابطه بایکر
4-1-15) رابطه ون راین
4-1-16) رابطه باگنولد
4-1-17) رابطه کیسی
4-2) روش محاسبه بار معلق
4-2-1) رابطه لین و کالینسکی
4-2-2) رابطه اینشتین
4-2-3) رابطه بروکس
4-2-4) رابطه چانگ سایمونز و ریچاردسون
4-2-5) رابطه باگنولد
4-2-6) رابطه ون راین
4-3) روش محاسبه بار کل
4-3-1) رابطه توفالتی
4-3-2) رابطه باگنولد
4-3-3) رابطه انگلوند و هانسن
4-3-4) رابطه ایکرز و وایت
4-3-5) رابطه یانگ
4-3-6) رابطه لارسن
4-3-7) رابطه کلبی
4-3-8) رابطه شن و هیونگ
4-3-9) رابطه کریم و کندی 76
5-1) مقایسه و ارزیابی نتایج
5-1-1) مقایسه مستقیم دقت معادلات انتقال رسوب با یکدیگر
5-1-2) خلاصه مقایسه ها و ارزیابی ها
5-1-3) روش های انتخاب توابع انتقال رسوب
5-2) تحلیل حساسیت
5-2-1) تحلیل حساسیت روابط به تغییرات دبی
5-2-2) تحلیل حساسیت روابط به تغییرات سرعت
5-2-3) تحلیل حساسیت روابط به تغییرات دانه بندی
5-3) نسبت بار بستر به معلق
6-1) نتیجه مقایسه روابط با یکدیگر
6-1-1) نتیجه گیری بار بستر
6-1-2) نتیجه گیری بار معلق
6-1-3) نتیجه گیری بار کل
6-1-4) نتیجه گیری تحلیل حساسیت
6-2) پیشنهادات
منابع و ماخذ
فهرست منابع فارسی 188
فهرست منابع لاتین 189
سایت های اطلاع رسانی 191
چکیده انگلیسی 192
1-1: خلاصه ای از پیشینه تحقیقات انجام شده در زمینه مورد مطالعه
2-1: خلاصه ای از روابط بار بستر مورد استفاده
2-2: خلاصه ای از روابط بار معلق مورد استفاده
2-3: خلاصه ای از روابط بار کل مورد استفاده
3-1: مشخصات اندازه قطرهای بدست آمده از 4 نمودار دانه بندی
3-2: محدوده دانه بندی رودخانه دوغ
3-3: مشخصات هیدرولیکی 4 اشل مختلف
4-1: مشخصات هیدرولیکی رودخانه دوغ در اشل 2 متر
4-2: برای نشان دادن مراحل حل رابطه توفالتی
4-3: برای نشان دادن مراحل حل رابطه توفالتی
4-4: برای نشان دادن مراحل حل رابطه توفالتی
4-5: برای نشان دادن مراحل حل رابطه توفالتی
4-6: برای نشان دادن مراحل حل رابطه توفالتی
4-7: برای نشان دادن مراحل حل رابطه توفالتی
5-1: تغییرات دبی رسوب بار بستر به دبی جریان
5-2: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار بستر به تغییرات دبی جریان
5-3: تغییرات دبی رسوب بار معلق به دبی جریان
5-4: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار معلق به تغییرات دبی جریان
5-5: تغییرات دبی رسوب بار کل به تغییرات دبی جریان
5-6: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار کل به تغییرات دبی جریان
5-7: تغییرات دبی رسوب روابط بار بستر به تغییرات سرعت
5-8: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار بستر به تغییرات سرعت
5-9: تغییرات دبی رسوب روابط بار معلق به تغییرات سرعت
5-10: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار معلق به تغییرات سرعت
5-11: تغییرات دبی رسوب روابط بار کل به تغییرات سرعت
5-12: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار کل به تغییرات سرعت
5-13: تغییرات دبی رسوب روابط بار بستر به تغییرات قطر دانه ها
5-14: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار بستر به تغییرات قطر دانه ها
5-15: تغییرات دبی رسوب روابط بار معلق به تغییرات قطر دانه ها
5-16: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار معلق به تغییرات قطر دانه ها
5-17: تغییرات دبی رسوب روابط بار کل به تغییرات قطر دانه ها
5-18: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار کل به تغییرات قطر دانه ها
5-19: نسبت بار بستر به بار معلق برای اشل 2 متر
6-1: مقایسه روابط بار معلق
3-1: اولین نمودار دانه بندی منطقه
3-2: دومین نمودار دانه بندی منطقه
3-3: سومین نمودار دانه بندی منطقه
3-4: سومین نمودار دانه بندی منطقه
3-5: تغییرات غلظت به دبی جریان بر اساس اندازه گیری های 30 ساله
5-1: تغییرات دبی بار بستر رابطه دوبویز به تغییرات دبی جریان
5-2: تغییرات دبی بار بستر رابطه شیلدز به تغییرات دبی جریان
5-3: تغییرات دبی بار بستر رابطه کالینسکی به تغییرات دبی جریان
5-4: تغییرات دبی بار بستر میر پیتر به تغییرات دبی جریان
5-5: تغییرات دبی بار بستر میر پیتر و مولر به تغییرات دبی جریان
5-6: تغییرات دبی بار بستر شاکلیج 1934 به تغییرات دبی جریان
5-7: تغییرات دبی بار بستر شاکلیج1943 به تغییرات دبی جریان
5-8: تغییرات دبی بار بستر اینشتین به تغییرات دبی جریان
5-9: تغییرات دبی بار بستر اینشتین براون به تغییرات دبی جریان
5-10: تغییرات دبی بار بستر ونونی و بروکس به تغییرات دبی جریان
5-11: تغییرات دبی بار بستر راتنر به تغییرات دبی جریان
5-12: تغییرات دبی بار بستر فریجلینک به تغییرات دبی جریان
5-13: تغییرات دبی بار بستر بایکر به تغییرات دبی جریان
5-14: تغییرات دبی بار بستر ون راین به تغییرات دبی جریان
5-15: تغییرات دبی بار بستر کیسی به تغییرات دبی جریان
5-16: تغییرات کل روابط بار بستر به تغییرات دبی جریان
5-17: تغییرات دبی بار معلق اینشتین به تغییرات دبی جریان
5-18: تغییرات دبی بار معلق چانگ سایمونز به تغییرات دبی جریان
5-19: تغییرات دبی بار معلق باگنولد به تغییرات دبی جریان
5-20: تغییرات دبی بار معلق ون راین به تغییرات دبی جریان
5-21: تغییرات کل روابط بار معلق به تغییرات دبی جریان
5-22: تغییرات دبی بار کل توفالتی به تغییرات دبی جریان
5-23: تغییرات دبی بار کل انگلوند و هانسن به تغییرات دبی جریان
5-24: تغییرات دبی بار کل ایکرز و وایت به تغییرات دبی جریان
5-25: تغییرات دبی بار کل لارسن به تغییرات دبی جریان
5-26: تغییرات دبی بار کل شن و هیونگ به تغییرات دبی جریان
5-27: تغییرات دبی بار کل کریم و کندی به تغییرات دبی جریان
5-28: تغییرات دبی بار کل ون راین به تغییرات دبی جریان
5-29: تغییرات دبی بار کل اینشتین به تغییرات دبی جریان
5-30: تغییرات کل روابط بار کل به تغییرات دبی جریان
5-31: تغییرات دبی بار بستر رابطه دوبویز به تغییرات سرعت
5-32: تغییرات دبی بار بستر رابطه شیلدز به تغییرات سرعت
5-33: تغییرات دبی بار بستر رابطه کالینسکی به تغییرات سرعت
5-34: تغییرات دبی بار بستر رابطه میر پیتر به تغییرات سرعت
5-35: تغییرات دبی بار بستر رابطه میر پیتر و مولر به تغییرات سرعت
5-36: تغییرات دبی بار بستر رابطه شاکلیج1934 به تغییرات سرعت
5-37: تغییرات دبی بار بستر رابطه شاکلیج1943 به تغییرات سرعت
5-38: تغییرات دبی بار بستر رابطه اینشتین به تغییرات سرعت
5-39: تغییرات دبی بار بستر اینشتین براون به تغییرات سرعت
5-40: تغییرات دبی بار بستر ونونی و بروکس به تغییرات سرعت
5-41: تغییرات دبی بار بستر راتنر به تغییرات سرعت
5-42: تغییرات دبی بار بستر فریجلینک به تغییرات سرعت
5-43: تغییرات دبی بار بستر بایکر به تغییرات سرعت
5-44: تغییرات دبی بار بستر ون راین به تغییرات سرعت
5-45: تغییرات دبی بار بستر کیسی به تغییرات سرعت
5-46: تغییرات کل روابط بار بستر به تغییرات سرعت
5-47: تغییرات دبی بار معلق اینشتین به تغییرات سرعت
5-48: تغییرات دبی بار معلق چانگ سایمونز به تغییرات سرعت
5-49: تغییرات دبی بار معلق باگنولد به تغییرات سرعت
5-50: تغییرات دبی بار معلق ون راین به تغییرات سرعت
5-51: تغییرات کل روابط بار معلق به تغییرات سرعت
5-52: تغییرات دبی بار کل توفالتی به تغییرات سرعت
5-53: تغییرات دبی بار کل انگلوند و هانسن به تغییرات سرعت
5-54: تغییرات دبی بار کل ایکرز و وایت به تغییرات سرعت
5-55: تغییرات دبی بار کل لارسن به تغییرات سرعت
5-56: تغییرات دبی بار کل شن و هیونگ به تغییرات سرعت
5-57: تغییرات دبی بار کل کریم کندی به تغییرات سرعت
5-58: تغییرات دبی بار کل ون راین به تغییرات سرعت
5-59: تغییرات دبی بار کل اینشتین به تغییرات سرعت
5-60: تغییرات دبی تمام روابط بار کل به تغییرات رسوب
5-61: تغییرات دبی بار بستر دوبویز به تغییرات قطر دانه
5-62: تغییرات دبی بار بستر شیلدز به تغییرات قطر دانه
5-63: تغییرات دبی بار بستر کالینسکی به تغییرات قطر دانه
5-64: تغییرات دبی بار بستر میر پیتر به تغییرات قطر دانه
5-65: تغییرات دبی بار بستر میر پیتر و مولر به تغییرات قطر دانه
5-66: تغییرات دبی بار بستر شاکلیج1934 به تغییرات قطر دانه
5-67: تغییرات دبی بار بستر شاکلیج1943 به تغییرات قطر دانه
5-68: تغییرات دبی بار بستر اینشتین به تغییرات قطر دانه
5-69: تغییرات دبی بار بستر اینشتین براون به تغییرات قطر دانه
5-70: تغییرات دبی بار بستر ونونی و بروکس به تغییرات قطر دانه
5-71: تغییرات دبی بار بستر راتنر به تغییرات قطر دانه
5-72: تغییرات دبی بستر فریجلینک به تغییرات قطر دانه
5-73: تغییرات دبی بار بستر بایکر به تغییرات قطر دانه
5-74: تغییرات دبی بار بستر ون راین به تغییرات قطر دانه
5-75: تغییرات دبی بار بستر کیسی به تغییرات قطر دانه
5-76: تغییرات دبی کل روابط بار بستر به تغییرات قطر دانه
5-77: تغییرات دبی بار معلق اینشتین به تغییرات قطر دانه
5-78: تغییرات دبی بار معلق چانگ سایمونز به تغییرات قطر دانه
5-79: تغییرات دبی بار معلق باگنولد به تغییرات قطر دانه
5-80: تغییرات دبی بار معلق ون راین به تغییرات قطر دانه
5-81: تغییرات دبی بار معلق اینشتین و باگنولد به تغییرات قطر دانه
5-82: تغییرات دبی بار معلق چانگ سایمونز و ون راین به تغییرات قطر دانه
5-83: تغییرات دبی بار کل توفالتی به تغییرات قطر دانه
5-84: تغییرات دبی بار کل انگلوند و هانسن به تغییرات قطر دانه
5-85: تغییرات دبی بار کل ایکرز و وایت به تغییرات قطر دانه
5-86: تغییرات دبی بار کل لارسن به تغییرات قطر دانه
5-87: تغییرات بار کل شن و هیونگ به تغییرات قطر دانه
5-88: تغییرات بار کل کریم و کندی به تغییرات قطر دانه
5-89: تغییرات بار کل اینشتین به تغییرات قطر دانه
5-90: تغییرات تمام روابط بار کل به تغییرات قطر دانه
2-1: نمودار شیلدز برای آستانه حرکت
2-2: رابطه بار بستر کالینسکی
2-3: ضریب بر اساس فلوم های آزمایشگاهی با بستر ماسه ای
2-4: تعیین x بر حسب
2-5: منحنی تغییرات بر حسب نرخ انتقال بار رسوب
2-6: ضرایب تصحیح بار بستر اینشتین
2-7: منحنی تغییرات بر حسب در تابع بار بستر اینشتین
2-8: منحنی های مشخص کننده پارامترهای بی بعد روش اصلاح شده اینشتین
2-9: منحنی معادله در روش اینشتین براون
2-10: مقادیر و در تابع انتقال بار بستر باگنولد
2-11: رابطه بین سرعت سقوط نسبی و ضریب
2-12: مقادیر ضریب بر حسب پارامترهای A و Z
2-13: مقادیر ضریب بر حسب پارامترهای A و Z
2-14: تابع انتقال بار معلق بروکس
2-15: رابطه بین Z و Z1
2-16: نمودار تغییرات ضریب بر حسب و
2-17: نمودار تغییرات ضریب بر حسب و
2-18: پارامترهای و k در روش توفالتی
2-19: رابطه بین قطر الک و سرعت سقوط ذرات
2-20: تابع در روش لارسن
2-21: رابطه بین رسوبات ماسه ای و سرعت جریان بازای قطر میانه دانه های بستر و عمق جریان های مختلف در آب 60 درجه فارنهایت
2-22: اثر دمای آب و غلطت ذرات ریزدانه های معلق بر رابطه حاکم بین دبی رسوبات ماسه ای و متوسط سرعت جریان
3-1: شکل مقطع عرضی رودخانه
5-1: درصد بار بستر به معلق