چکیده
فناوری Si CMOS به دلیل مصرف توان پایین، تراکم بالای تراشه ها، نویز پایین و قابلیت اطمینان به عنوان فناوری غالب در عرصه VLSI شناخته شده است. در گذشته تحقیقات گسترده بر روی سیلیسیم تحت کرنش رشد چشم گیری یافته است. در این پایان نامه، ساختار جدیدی معرفی می گردد که محدودیت قاعده مقیاس بندی را از طریق تلفیق کرنش با مهندسی زیرنوار، تا حدود زیادی مرتفع می سازد. این ساختار ترانزیستور MOSFET با کانال کرنش یافته و پیوند ناهمگون در سورس می باشد.
افزاره مورد بررسی، عملکرد بهتر و سرعت بالایی نسبت به افزاره های CMOS توده ای دارد. علاوه بر این، فرایند ساخت این افزاره با فناوری ساخت CMOS کاملا منطبق می باشد و در تمامی حوزه هایی که افزاره های توده ای قابل استفاده هستند، کاربرد دارد.
تحلیل های عددی نشان می دهند که استفاده از کرنش و پیوند ناهمگون در ساختار این ترانزیستور، موجب بهبود قابلیت حرکت حامل ها، افزایش جریان حالت روشنی و هدایت انتقالی و نیز بهبود مشخصات DC افزاره می گردد. از جمله مشکلاتی که در این افزاره وجود دارد، نشتی تونل زنی نوار به نوار به دلیل استفاده از ماده SiGe می باشد که به افزایش جریان حالت خاموشی در این افزاره منجر می گردد و علی رغم جریان راه انداز بالا، موجب محدودیت در استفاده از این افزاره برای کاربردهای توان پایین می شود. جهت رفع این عیب برای اولین بار از ساختار اکسید نامتقارن و مهندسی زیر نوار برای کاهش جریان نشتی در این افزاره استفاده شده است. ساختار پیشنهاد شده، 93% کاهش در جریان حالت خاموشی ایجاد کرد. همچنین به منظور افزایش بیشتر جریان حالت خاموش، ساختار SHOT دو گیتی پیشنهاد شد که جریان راه انداز آن تقریبا دو برابر SHOT تک گیتی می باشد. جهت کاهش جریان نشتی افزاره SHOT دو گیتی از ایده اکسید گیت نامتقارن و مهندسی تابع کار استفاده شده است. ساختار پیشنهاد شده 90% کاهش در جریان نشتی ایجاد نموده است.
همچنین با در نظر گرفتن تاثیرات مهمی که اثرات خودگرمایی در کاهش جریان افزاره و بروز پدیده مقاومت منفی دارد، ساختار MOSFET با پیوند ناهمگون در سورس با ساختار عایق چند لایه ای پیشنهاد شد. ساختار پیشنهادی، دمای افزاره در کانال را کاهش می دهد و مشخصه جریان خروجی ترانزیستور را بهبود می بخشد.
مقدمه
افزون بر 20 سال است که صنعت میکرو الکترونیک کمابیش همگام با قاعده مور پیش می رود. اعمال قاعده مقیاس بندی در فناوری CMOS منجر به بهبود چگالی افزاره ها، بهبود عملکرد و کاهش هزینه ساخت آنها گردیده است. با ادامه قاعده مقیاس بندی در مدارات مجتمع با این سوال مواجه می شویم که آیا صنعت میکروالکترونیک به حد نهایی مقیاس بندی رسیده است یا نه؟ از جمله مشکلات قابل ذکر که فناوری CMOS در مسیر مقیاس بندی در رژیم زیر 100 نانومتر با آن مواجه می باشد، می توان به اثرات کانال کوتاه، توان مصرفی، ولتاژ آستانه، اثرات میدان بالا، مشخصه های اکسید گیت، تاخیرهای اتصالات داخلی و نقش نگاری اشاره نمود. در فناوری Si CMOS افزایش تراکم ناخالصی کانال برای محدود کردن اثرات کانال کوتاه صورت می گیرد ولی متاسفانه این امر به کاهش قابلیت حرکت و تقویت جریان نشتی منتهی می گردد. برای رفع این مشکل SOI MOSFET های فوق العاده نازک طراحی شده اند که از مزایای زیر برخوردارند:
1) عدم نیاز به آلایش و یا نیاز به آلایش کم کانال در این افزاره ها، مشکل اثر کانال کوتاه را رفع می نماید.
2) کاهش پراکندگی کولمبی و میدان موثر عمودی به ارتقا قابلیت حرکت حامل ها در کانال SOI MOSFET ها منتهی شده و خازن پارازیتی پیوند سورس / درین کاهش می یابد.
3) فرایندهای جداسازی ساده مانند فناوری mesa به راحتی به فرایند ساخت این افزاره ها قابل اعمال می باشد.
4) مشکل نوسانات کوچک ولتاژ آستانه، به دلیل تراکم پایین ناخالصی های کانال مرتفع می شود.
با وجود تمام مزایای ذکر شده، قابلیت حرکت حامل ها و بالاخص قابلیت حرکت حفره ها در لایه وارون کانال سیلیسیم توده ای در SOI MOSFET ها در مقایسه با دیگر نیمه هادی ها مانند Ge و GaAs کاملا پایین می باشد. این امر موجب محدودیت در سرعت کلیدزنی افزاره های CMOS زیر 100 نانومتر می گردد. بنابراین استفاده از روش هایی مانند اعمال کرنش به سیلیسیم معمولی جهت افزایش قابلیت حرکت حفره ها و یا استفاده از موادی که خصوصیات انتقال بهترین نسبت به سیلیسیم معمولی دارند، به دو دلیل ممکن است راه حل مناسبی باشد. در اثر رشد چاه های کوانتومی Si/Ge در کانال، کرنش مابین لایه های سیلیسیم و سیلیسیم ژرمانیم شکل می گیرد؛ در این راستا، قابلیت حرکت الکترون ها و حفره ها حداقل تا میزان دو برابر افزایش می یابد. بنابراین Strained Si MOSFET از ساختارهایی هستند که در آنها قابلیت حرکت الکترون ها و حفره ها بالا می باشد علاوه بر این، حامل های محبوس در چاه کوانتومی، از پراکنش ناخالصی های یونیزه شده در مقایسه با سامانه ماده Si/SiO2 به میزان زیادی جلوگیری می نماید. سامانه Si/Ge با کمک به افزایش جریان راه انداز موجب کاهش زمان های تاخیر اتصالات داخلی می شود. برای یاری جستن از مزایای توام فناوری SOI MOSFET و strained Si MOSFET ترکیب جدیدی از MOSFET ها تحت عنوان Strained SOI MOSFET پدید آمده اند.
تعداد صفحه : 125
چکیده:
افزایش کارایی در ماسفت ها با کوچک کردن ابعاد افزاره حاصل می شود. با وجود مزیت های کوچک سازی، این روش با محدودیت های فیزیکی و اقتصادی روبروست و در نتیجه راه حل های جدیدی پیشنهاد میشود. کاربرد ساختار کرنش دار سیلیسیم . سیلیسیم ژرمانیم در ناحیه کانال ترانزیستور ماسفت، با افزایش قابلیت حرکت حامل ها و در نتیجه افزایش جریان حالت روشنی ترانزیستور، باعث افزایش کارایی حتی در طول کانال های بسیار کوچک می شود. اما یکی از چالش های اصلی در این میان وجود مقاومت های پارازیتی سورس و درین است.
در این پروژه، ترانزیستور ماسفت با سورس / درین فلزی و کانال کرنش یافته به عنوان ساختاری که این مشکل را مرتفع می کند مورد مطالعه و شبیه سازی قرار گرفته است. تونل زنی از سد شاتکی و جریان ترمویونی از سازوکارهای اصلی جریان در این افزاره است. استفاده از ساختار ماسفت با سورس / درین فلزی و کانال کرنش یافته موجب افزایش در قابلیت حرکت حامل ها، جریان حالت روشنی، نسبت Ion/Ioff و هدایت انتقالی این افزاره نسبت به ساختار متناظر ماسفت با سورس / درین فلزی و کانال سیلیسیم شده است. افزاره ماسفت با سورس / درین فلزی و کانال کرنش یافته دارای جریان حالت روشنی کمتر نسبت به ساختار متناظر با سورس / درین آلاییده شده می باشد. با افزایش درصد مولی ژرمانیم در کانال سیلیسیم / ژرمانیم، جریان حالت روشن در این افزاره بهبود می یابد. همچنین شبیه سازی ها نشان می دهند کاهش ضخامت لایه کلاهک سیلیسیمی در این افزاره موجب بهبود چشمگیر مشخصه های الکتریکی شده است. جریان های تونل زنی و انتشار ترمویونی از سورس به بستر، از عوامل اصلی افزایش جریان حالت خاموشی و محدودیت عملکرد این افزاره محسوب می شوند. جهت رفع این نقیصه، برای نخستین بار ساختار بدیع ماسفت با سورس درین فلزی و کانال کرنش یافته سیلیسیم – بروی – عایق پیشنهاد شده است به طوری که با استفاده از فناوری سیلیسیم – بروی – عایق، جریان حالت خاموشی به میزان 98% کاهش یافته است.
مقدمه:
با ساخت اولین ترانزیستور در سال 1947 میلادی، صنعت الکترونیک وارد مرحله جدیدی گردید. این فناوری در کمتر از 50 سال مرزهای میکرون را در نوردید و با عرضه تراشه Pentium IV توسط شرکت Intel با دقت ابعادی در حد دهم میکرون، عملا عصر نانو الکترونیک آغاز گردید. کاهش ابعاد ترانزیستورها از چند جنبه قابل بررسی است: افزایش سرعت یکی از مهمترین مزایای کاهش ابعاد ترانزیستورها می باشد. افزایش سرعت مدارهای مجتمع قابلیت انجام محاسبات پیچیده تر در زمان های کمتر را به وجود می آورد. ویژگی دیگری که در ساخت تراشه های مدار مجتمع مورد توجه است کاهش ولتاژ و توان الکتریکی مورد نیاز مدارهای مجتمع می باشد. امروزه کوچک بودن و قابل حمل بودن در بسیاری از سیستم های الکترونیکی مورد توجه است. تراشه های مدار مجتمع با سطح ولتاژ و جریان پایین کاربردهای وسیعی یافته اند. کاهش ابعاد ترانزیستورها موجب افزایش بازدهی و کاهش قیمت تمام شده افزاره های نیمه هادی گردیده است.
روند کاهش ابعاد ترانزیستورها در ابعاد نانو مشکلاتی را پدید می آورد که به آثار کانال کوتاه معروفند و موجب ضعف عملکرد و افزایش توان تلفاتی در این افزاره ها می گردند.
برای رفع مشکلات فوق، در این پروژه اصول و عملکرد یک ترانزیستور اثر میدانی سورس و درین فلزی با کانال کرنش یافته مورد مطالعه و شبیه سازی قرار گرفته است. از آنجا که تغییر مقیاس و مجتمع سازی افزاره وابستگی شدیدی به کاهش میزان جریان نشتی دارد، برای نخستین بار ترانزیستور اثر میدانی سورس درین فلزی و کانال کرنش یافته سیلسیم – بروی – عایق پیشنهاد شده است. براساس نتایج بدست آمده، به نظر می رسد این افزاره می تواند گزینه مناسبی برای کاربرد در ابعاد نانو محسوب گردد.
تعداد صفحه : 125
کارایی کدهای توربو و سیستم OFDM در تصحیح خطای کانال در سیستم WLAN
Analyze and Simulation of Turbo coding in
WLAN-OFDM system
چکیده:
نوع جدیدی از بلورهای فوتونیک، مواد شکاف باند الکترومغناطیسی (EBG) است که تحت عنوان شکاف باندهای فوتونیک نیز شناخته می شوند. این مواد از ساختارهای دی الکتریک یا فلزی تشکیل شده اند که در یک، دو و سه بعد متناوب هستند. ساختارهای EBG باندی از فرکانس را ایجاد می کنند که در آن هیچ مد انتشاری وجود ندارد. بدین ترتیب می توان رفتار الکترومغناطیسی آنتن ها و دیگر ابزار الکترونیکی را کنترل کرد. در این پایان نامه به طراحی، شبیه سازی و تحلیل آنتن های بند گپ الکترومغناطیسی در باند Ku پرداخته شده است. آنتن های EBG در این باند فرکانسی به سه دسته تقسیم شدند: 1) آنتن پچ شکافی با زیرلایه EBG و 2) آنتن پچ ماکرواستریپ با فوق لایه EBG و 3) آنتن تک قطبی با بازتابنده EBG. زیرلایه EBG از نظر تأثیر بر امواج سطحی و بازده تشعشعی آنتن بررسی شد. عملکرد فوق لایه های EBG با پارامترهای بهره و ستمگرایی مورد سنجش قرار گرفت. بازتابنده های EBG نیز با همتای فلزی خود مقایسه شدند. مواد EBG مورد استفاده، یک و سه بعدی است. آنتن ها تحت دو نوع قطبی شدگی خطی و دایروی قرار گرفته اند. جهت تحلیل اثرات مواد EBG بر آنتن و شبیه سازی آنها از نرم افزار HFSS10 استفاده گردید. نتایج حاصل از شبیه سازی تلف بازگشتی، بهره، نقشه تشعشعی صفحات E و H و سمتگرایی است.
نگارهٔ ماهوارهای کانال سوئز
کانال سوئز آبراهی اصطناعی از عمل انسان است که دریای سرخ به دریای مدیترانه متصل میکند. این کانال از سمت مغرب صحرای سینا واقع شدهاست.
طول کانال
درازی کانال سوئز ۱۶۳ کیلومتر میباشد از بورسعید در ساحل دریای مدیترانه ، تا برسد به شهر السویس در کرانهٔ دریا دریای سرخ. در نیمه راه دریاچهٔ المرة کانال به دوقسمت میکند، قسمتی از کانال در شمال دریاچهٔ «اَلمُرةَ» واقع میباشد ، وقسمتی از جنوب دریاچهٔ «اَلمُرةَ» قرار دارد. «کانال سوئز» کشتیهایی که از اروپا ودولتهای متوسطه به سوی آسیا روانه هستند هدایت میکند. قبل از احداث «کانال سوئز» کشتیها ناچار بودند از آبراه رأس الرجاء الصالح عبور کنند واز قاره آفریقا بگذرند. همچنین قبل احداث این کانال کشتیها بارهای خود را در ساحل دریای مدیترانه تخلیه کرده واز راه زمینی به شهر السویس درساحل دریا سرخ رسانده، دوباره با کشتی از دریا سرخ به سوی آسیا عبور میدادهاند.