فرمت فایل : WORD (قابل ویرایش)
تعداد صفحات:93
پایاننامه برای دریافت درجه کارشناسی ارشد"M.Sc"
مهندسی برق-کنترل
فهرست مطالب:
عنوان صفحه
چکیده..............................................................................................................................................1
مقدمه...............................................................................................................................................2
فصل اول:کنترلکننده یکپارچه توان.................................................................................................3
1-1. مشخصهها و اصول عملکرد پایه...................................................................................3
1-1-1. قابلیتهای مرسوم کنترل خط انتقال.................................................................5
فصل دوم: مدلسازی کنترلکننده یکپارچه توان در مطالعات پخش بار..........................................10
2-1. مدلسازی کنترلکننده یکپارچه توان در مطالعات پخشبار با روش الموش.................11
2-1-1. مبدل بدون تلفات خطوط تجهیزشده با UPFC................................11
2-1-2. روابط پخشبار بهینه شامل UPFC................................................................18
2-2. مدلسازی کنترلکننده یکپارچه توان در مطالعات پخشبار با روش نوروزیان .......... 20
2-2-1. مدل UPFC جهت مطالعات پخشبار............................................................20
2-2-1-1. مدل منبع ولتاژ سری (مبدل).........................................................20
2-2-1-2. مدل UPFC..................................................................................22
2-2-1-3. مدل تزریقیUPFC برای معادلات پخشتوان...............................23 2-2-2. ابعاد UPFC...................................................................................................24
2-3. مدلسازی کنترلکننده یکپارچه توان در مطالعات پخشبار با روش نیوتن...................26
2-3-1. مدار معادل UPFC.........................................................................................26 2-3-1-1. مدل بر پایه منبع ولتاژ.....................................................................26
2-3-1-2. مدل نبوی نیاکی ایروانی.................................................................27
2-3-1-3. روابط UPFC جهت انجام معادلات پخشبار بهینه........................28
2-3-1-3-1. معادلات توان UPFC...............................................29
2-3-1-3-2. تابع لاگرانژ UPFC..................................................31
2-3-1-3-3. تابع لاگرانژ خط DC...............................................32
فهرست مطالب
عنوان صفحه
2-3-1-3-4. ضرائب توان UPFC.....................................................32
2-3-1-3-5. معادلات خطیسازی شده.............................................33
2-3-2. حالتهای اولیه UPFC در حل معادلات پخشبار بهینه......................................40
2-3-2-1. دامنهها و زوایای ولتاژ گرهی..........................................................40
2-3-2-2. برنامه زمانی (فهرست توان اکتیو)...................................................40
2-3-2-3. ضریب لاگرانژ................................................................................40
2-3-2-4. منبع سری.......................................................................................41
2-3-2-5. منبع موازی.....................................................................................41
2-3-2-6. بررسی محدودیتهای متغیرهای قابل کنترل UPFC........................42
فصل سوم: انتخاب مدل کنترلکننده یکپارچه توان در مطالعات پخشبار........................................43
3-1. مدل نیوتن – رافسون....................................................................................................45
3-2. مدل نبوی نیاکی ایروانی................................................................................................45
فصل چهارم: شبیهسازی پخشبار کنترلکننده یکپارچه توان در شبکه انتقال
سیستان و بلوچستان و شبکه نمونه 24 شین IEEE.................................................45
4-1. شبکه انتقال سیستان بلوچستان....................................................................................45
4-1-1. بررسی پخشبار اولیه شبکه سیستان و بلوچستان..........................................47
4-1-2. بررسی پخشبار شبکه سیستان و بلوچستان با UPFC..................................50
4-1-3. بررسی پخش بار بهینه بر روی شبکه سیستان بلوچستان...............................52
4-1-4. بررسی پخش بار بهینه بر روی شبکه سیستان بلوچستان با UPFC...............55
4-2. شبکه انتقال 24 شین IEEE.........................................................................................58
4-2-1. بررسی پخشبار اولیه شبکه 24 شین IEEE...................................................60
4-2-2. بررسی پخشبار شبکه 24 شین IEEE با UPFC............................................64
فهرست مطالب
عنوان صفحه
4-2-3. بررسی پخش بار بهینه بر روی شبکه 24 شین IEEE.......................................68
4-2-4. بررسی پخش بار بهینه بر روی شبکه 24 شین IEEE با UPFC......................72
فصل پنجم: نتیجهگیری و پیشنهادات
نتیجهگیری........................................................................................................................................77
پیشنهادات........................................................................................................................................78
فهرست منابع لاتین..........................................................................................................................79
فهرست منابع فارسی.......................................................................................................................80
چکیده انگلیسی...............................................................................................................................81
فهرست شکلها
عنوان صفحه
شکل 1-1: نمایش یک UPFC در یک سیستم قدرت با دو ماشین...................................................3
شکل 1-2: یک UPFC با استفاده از دو مبدل منبع ولتاژی پشت به پشت........................................4
شکل 1-3: محدوده توان اکتیو قابل انتقالP و تقاضای توان راکتیو پایانه دریافت کننده Q
بر حسب زاویه یک خط انتقال کنترلشده بوسیله UPFC...........................................6
شکل 1-4: محدوده P توان اکتیو قابل انتقال و A تقاضای توان راکتیو انتهای دریافت کننده
بر حسب زاویه انتقال یک خط انتقال که به وسیله UPFC کنترلشده است...............9
شکل 2-1: خطوط انتقال تجهیزشده با UPFC بدون تلفات............................................................11
شکل 2-2: مدل خط دارای UPFC که توسط منبع جریان نشان داده شده است............................14
شکل 2-3: مدل خط مجهز به UPFC.........................................................................................15
شکل 2-4: توازن پخش بار در شین i و j......................................................................................17
شکل 2-5: منبع ولتاژ سری قابل کنترل...........................................................................................20
شکل 2-6: دیاگرام برداری..............................................................................................................21
شکل 2-7: جایگزینی منبع ولتاژ سری با منبع جریان......................................................................21
شکل 2-8: مدل تزریقی برای VCS................................................................................................22
شکل 2-9: مدل UPFC..................................................................................................................23
شکل 2-10: نمودار جریانی تعیین ابعاد بهینه UPFC....................................................................25
شکل 2-11: مدار معادل UPFC بر اساس مدل منبع ولتاژی.........................................................26
شکل 2-12: نمایش مدل نبوی نیاکی و ایروانی..............................................................................27
شکل 2-13: مدار معادل مدل نبوی نیاکی ایروانی...........................................................................27
شکل 3-1: نمایش مدل نبوی نیاکی و ایروانی................................................................................44
شکل 3-2: مدار معادل مدل نبوی نیاکی ایروانی.............................................................................44
شکل 4-1: شمای کلی شبکه 230KV انتقال سیستان بلوچستان...................................................47
شکل 4-2: شبکه سیستان و بلوچستان همراه با UPFC نصب شده بین مسیر خاش– ایرانشهر....50
شکل 4-3: شبکه سیستان و بلوچستان با توابع اقتصادی................................................................52
شکل 4-4: شبکه سیستان و بلوچستان با توابع اقتصادی و UPFC ...............................................55
فهرست شکلها
عنوان صفحه
شکل 4-5: سیستم نمونه 24 شین IEEE........................................................................................60
شکل 4-6: سیستم نمونه 24 شین IEEE با UPFC........................................................................64
شکل 4-7 سیستم نمونه 24 شین IEEE با توابع اقتصادی............................................................68
شکل 4-8: سیستم نمونه 24 شین IEEE با توابع اقتصادی و UPFC..........................................72
فهرست جدولها
عنوان صفحه
جدول 2-1: اطلاعات مربوط به ماتریس ژاکوبین....................................................................24
جدول 4-1: مشخصات خطوط شبکه انتقال سیستان بلوچستان...............................................46
جدول 4-2: مشخصات ژنراتورهای شبکه سیستان بلوچستان.................................................46
جدول 4-3: توزیع ژنراتورها و اثرات UPFC در میزان تولید.................................................57
جدول 4-4: مشخصات خطوط سیستم نمونه 24 شین IEEE................................................58
جدول 4-5: ضرائب تابع هزینه سیستم نمونه 24 شین IEEE................................................59
جدول 4-6: مشخصات بار سیستم نمونه 24 شین IEEE.......................................................59
جدول 4-7: نحوه توزیع ژنراتورها و اثرات UPFC در میزان تولید.......................................76
چکیده
کنترلکننده یکپارچه توان(UPFC) از عناصر جدید ادوات FACTS میباشد که قابلیتهای برجستهای در تنظیم همزمان توان اکتیو و راکتیو بهصورت مستقل از هم،بهبود رفتار سیستم در حالت دینامیک، کاهش تراکم و کاهش هزینه تولید را دارا میباشد. از موضوعات مهم این عنصر داشتن مدل مناسبی برای پخشبار میباشد.اولین مدل پخشبار در سال 1996 ارائه شد که تا کنون مطالعات زیادی روی آن صورت گرفت.در این پایاننامه مدلهای مختلف ارائه شده مورد ارزیابی قرار گرفت و از میان آنها مدل مناسب از نظر سادگی و عملی بودن برای پخشبار و پخشبار بهینه انتخاب شده است و صحت آن با شبیهسازی رایانهای بهوسیله نرمافزارهای MATLAB و PSAT به اثبات رسیده است.
مقدمه
جهان در قرن بیست ویکم با چالشهای جدیدی برای محافظت از ساکناناش ،منابعاش ومحیط زیستاش روبهرو است. الکتریسته که عامل اصلی تغییرات در قرن پیش بوده است در سالهایی که پیشرو است نیز بسیار سرنوشت ساز خواهد بود. اما در ابتدا زیرساخت صنعت برق خود باید دگرگون شود. درحال حاضر صنعت برق آمادگی لازم را برای برآوردن خواستههای اقتصاد دیجیتال آینده، دنیایی با رقابت افزاینده و محیط زیست در معرض خطر را ندارد. قوانین اخیر زیست محیطی ، مسائل مربوط به حق مسیر ، افزایش هزینههای ساخت و تنظیم مجدد و رشد سریع مصرف نیاز به استفاده از حداکثر ظرفیت ممکن سیستم های تولید و انتقال موجود را ایجاد می¬کند.
صنایع الکترونیکی به دنبال تجهیزاتی با عملکرد با انعطاف پذیری بیشتر در سیستمهای انتقال هستند که تا به کمک آنها محدودیت موجود در سیستم انتقال را کاهش داد. ادوات FACTS قادر هستند که انعطافپذیری مورد نیاز سیستم انتقال را در حین عملکرد فراهم کنند .
مدل UPFC انحصاری و مرکب از جبرانسازهای سری و موازی سریع است و کنترل انعطافپذیری از شبکه برق را فراهم میکند. ویژگی UPFC بهعنوان یکی از ادوات FACTS پیشرفته، توانایی تنظیم دامنه ولتاژ شین و زاویه فاز و امپدانس خط میباشد. این ویژگی قدرتمند UPFC سبب میشود که از این وسیله در کاربردهای زیادی از جمله پایدارسازی ولتاژ و فاز و همچنین افزایش ظرفیت خطوط انتقال موجود درشبکه استفاده کرد.
فصل اول
کنترلکننده یکپارچه توان
1-1- مشخصهها و اصول عملکرد پایه
هدف از ابداع کنترلکننده یکپارچه توان UPFC، کنترل بلادرنگ و جبران دینامیکی سیستمهای انتقال ac بوده و بدین وسیله قابلیت چند منظوره لازم برای حل بسیاری از مسائل و مشکلات موجود در صنعت انتقال توان فراهم گردید.
شکل (1-1) نمایش یک UPFC در یک سیستم قدرت با دو ماشین
از دیدگاه نظری، UPFC یک منبع ولتاژ سنکرون (SVS) تعمیم یافته است که در فرکانس پایه، بوسیله ولتاژ فازوری Vpqبا دامنه و زاویه قابل کنترل، نمایش داده میشود و بهصورت سری در خط انتقال قرار میگیرد که در سیستم با دو ماشین (یا دو سیستم مستقل با یک خط انتقال ارتباطی) شکل (1-1) نشان داده شده است.
در این ترکیب، SVS عموماً با سیستم انتقال، هم توان اکتیو و هم توان راکتیو مبادله میکند. از آنجایی که طبق تعریف،SVS تنها قادر به تولید توان راکتیو تبادلی است،توان اکتیو باید توسط گیرنده یا منبع تغذیه مناسبی از آن جذب یا به آن داده شود. در آرایش UPFC، همانطور که در شکل مشاهده میشود، توان اکتیوی که SVS مبادله میکند، بوسیله یکی از دو شین ابتدا یا انتهای خط تأمین میشود (در این ترکیب هدف، کنترل پخش توان است، نه افزایش ظرفیت تولید سیستم)
امروزه در کاربرد عملی طبق شکل (1-2)، UPFC از دو مبدل منبع ولتاژی پشت به پشت که از کلیدهای تایریستوری GTO استفاده میکنند، تشکیل شده است. این مبدلها که در شکل با مبدل 1 و مبدل 2 نشان داده شدهاند، توسط یک لینگ dc مشترک با یک خازن ذخیره dc، به هم مرتبطند.
این آرایش مانند یک مبدل توان ac به ac ایده آل عمل مینماید که در آن توان حقیقی، میتواند آزادانه در هر جهتی بین ترمینالهای ac دو مبدل عبور کند و هر مبدلی میتواند بطور مستقل توان راکتیو را در ترمینال خروجی ac خود تولید (یا جذب) کند.
فرمت فایل : WORD (قابل ویرایش)
تعداد صفحات:101
پایان نامه برای دریافت درجه کارشناسی ارشد "M.Sc"
مهندسی برق – کنترل
فهرست مطالب:
عنوان مطالب شماره صفحه
چکیده 1
فصل اول : پیشگفتار 2
1-1 مقدمه 3
1-2 انرژی باد 4
1-3 مزایای بهره برداری از انرژی باد 4
1-4 اهمیت کنترل توان راکتیو در نیروگاه بادی 5
1-5 پیکربندی پایان نامه 6
فصل دوم : مشخصههای سیستمهای بادی 7
2-1 مقدمه 8
2-2- فنآوری توربینهای بادی 9
2-2-1- اجزای اصلی توربین بادی 11
2-2-2- چگونگی تولید توان در سیستمهای بادی 12
2-2-3- منحنی پیش بینی توان توربین بادی 13
2-2-4- پارامترهای مهم در توربین بادی 13
2-3- انواع توربینها از لحاظ سیستم عملکرد 14
2-3-1- عملکرد توربینهای سرعت ثابت 14
2-3-1-1- توربینهای ممانعت قابل تنظیم سرعت ثابت 15
2-3-1-2- توربینهای ممانعت تنظیم شده دو سرعتی 15
2-3-1-3- توربینهای زاویة گام قابل تنظیم فعال سرعت ثابت 16
2-3-1-4- توربینهای زاویة گام قابل تنظیم غیر فعال 16
2-3-2- الگوی عملکرد سرعت متغیر 16
2-3-2-1- توربینهای ممانعت تنظیم شده سرعت متغیر 17
2-3-2-2- توربینهای سرعت متغیر با زاویة گام قابل تنظیم فعال 17
2-3-2-3- توربینهای سرعت متغیر با محدوده عملکرد کوچک 18
2-4- کنترل توربین بادی 18
2-4-1- فعالیتهای قابل کنترل در توربینهای بادی 19
فهرست مطالب
عنوان مطالب شماره صفحه
2-4-1-1- کنترل گشتاور آیرودینامیکی 19
2-4-1-2- کنترل گشتاور ژنراتور 20
2-4-1-3- کنترل گشتاور ترمز 20
2-4-1-4- کنترل جهت گیری دوران حول محور قائم 21
2-4-2- کلیات عملکرد توربینهای متصل به شبکه 21
2-5- ژنراتورهای مورد استفاده در توربینهای بادی 22
2-5-1- ژنراتورهای سنکرون 23
2-5-2- ژنراتورهای جریان مستقیم 24
2-5-3- ژنراتورهای القائی 25
2-5-4- تحلیل عملکرد ژنراتور القائی 25
2-5-4-1- راهاندازی توربین بادی با ژنراتور القائی 26
2-5-4-2- تحلیل دینامیک ماشین القائی 27
2-5-4-3- شرایط عملکرد خارج از محدوه طراحی 28
2-5-4-4- مشخصه ژنراتور القایی دو سوتغذیه 28
خلاصه فصل 2 30
فصل سوم : مدلسازی ژنراتور القائی با تغذیه دوبل 31
3-1- مقدمه 32
3-2- عملکرد فوق سنکرون و زیر سنکرون ژنراتور القایی دو سو تغذیه 33
3-3- تبدیل قاب مرجع 35
3-3-1- تبدیل قاب مرجع abc/dq 35
3-3-2- تبدیل قاب مرجع abc به αβ 39
3-4- مدلهای ژنراتور القایی 39
3-4-1- مدل بردار-فضا 40
3-4-2- مدل قاب مرجع dq 43
3-5- مدل مرتبه 3 ژنراتور القایی دو سو تغذیه 45
3-6- بیان پارامترها در سیستم پریونیت 45
فهرست مطالب
عنوان مطالب شماره صفحه
3-7- کنترل اینورتر متصل به شبکه 47
3-8- کنترل چرخش ولتاژ(VOC) 48
3-9- کنترل چرخش میدان(FOC) 51
خلاصه فصل 3 53
فصل چهارم : طراحی کنترلکننده بهینه فیدبک حالت و خروجی 54
4-1- مقدمه 55
4-2- مروری بر تحقیقات انجام شده در زمینه کنترل توان در DFIG 56
4-3- توصیف سیستم 58
4-4- مدل توربین بادی 59
4-5- مدل ژنراتور القایی دو سو تغذیه 60
4-6- مدل جعبه دنده 61
4-7- مدل فیلتر RL 62
4-8- فضای حالت سیستم 64
4-9- طراحی با جایدهی قطب 67
4-10- طراحی کنترلکننده برای مدل تقویت شده 71
4-11-شبیه سازی 73
4-12- طراحی کنترلکننده PI جهت کنترل سرعت روتور (wr) 83
خلاصه 86
فصل پنجم : نتیجه گیری و پیشنهادات 87
پیوستها 91
منابع و مأخذ 92
فهرست منابع فارسی 93
فهرست منابع لاتین 95
چکیده انگلیسی 96
صفحه عنوان انگلیسی 97
اصالت نامه 98
فهرست شکلها
عنوان شماره صفحه
شکل2-1- توربینهای بادی مدرن واقع در مزرعه بادی 8
شکل2-2- انواع توربینهای بادی 10
شکل 2-3- انواع توربینهای بادی 11
شکل 2-4- دیاگرام سیستم بادی 12
شکل 2-5- منحنی توان بر حسب سرعت باد توربین بادی 13
شکل2-6- کلاسبندی ژنراتورهای الکتریکی که اغلب در توربینهای بادی استفاده میشوند 23
شکل 2-7- منحنی توان، جریان و گشتاور ژنراتور القائی 26
شکل 2-8- منحنی افزایش جریان بر حسب کاهش فرکانس در ماشین القایی 28
شکل 2-9- دیاگرام بلوکی توانهای جاری شده در ژنراتورهای القائی دو سو تغذیه 29
شکل 3-1- ساختار DFIG 32
شکل 3-2- مبدل پشت به پشت 32
شکل 3-3 الف : حالت فوق سنکرون 33
شکل 3-3 ب: حالت زیر سنکرون 34
شکل 3-4- مشخصه گشتاور – سرعت DFIG 34
شکل 3-5- بردار فضای x ومتغیرهای سه فازش xa,xb,xc 36
شکل 3-6- تبدیل متغیرها در قاب ساکن سه فاز(abc) به قاب دو فاز (dq) 37
شکل 3-7- تجزیه بردار فضای x به قاب مرجع گردان (dq) 38
شکل 3-8- دیاگرام ساده شده DFIG 40
شکل 3-9- مدار معادل بردار فضا ژنراتور القایی در قاب مرجع دلخواه 42
شکل 3-10- مدل ژنراتور القایی در قاب سنکرون 43
شکل 3-11- مدل ژنراتور القایی در قاب ساکن 43
شکل 3-12- اینورتر متصل به شبکه در سیستم مبدل بادی 47
شکل 3-13- دیاگرام فاز و PF 48
شکل 3-14- بلوک دیاگرام کنترل چرخش ولتاژ(VOC) 49
شکل 3-15- کنترل چرخش میدان شار روتور 52
شکل 4-1- منحنی مشخصه سرعت – توان توربین در زاویه گام صفر 59
شکل 4-2- سیستم کنترل حلقه باز 69
شکل 4-3- سیستم کنترل حلقه بسته 69
شکل 4-4- خطای حالت دائمی توان راکتیو سمت استاتور 70
شکل 4-5- خطای حالت دائمی توان راکتیو کانورترسمت شبکه (فیلتر RL) 71
شکل 4-6- پاسخ پله توان راکتیو سمت استاتور پیش از بهینه سازی 73
شکل 4-7- پاسخ پله توان راکتیو فیلتر RL پیش از بهینه سازی 74
شکل 4-8- پاسخ پله توان راکتیو سمت استاتور پس از بهینهسازی 74
شکل 4-9- پاسخ پله توان راکتیو فیلتر RL پس از بهینه سازی 75
شکل 4-10- نمودارسیگنال کنترل Vds پس از بهینهسازی 75
شکل 4-11- نمودارسیگنال کنترلVdg پس از بهینهسازی 76
شکل 4-12- نمودارسیگنال جریان مؤلفه d استاتور پس از بهینهسازی 77
شکل 4-13- نمودارسیگنال جریان مؤلفه d فیلتر RL پس از بهینهسازی 77
شکل 4-14- نمودارسیگنال جریان مؤلفه q فیلتر RL پس از بهینهسازی 78
شکل 4-15- نمودارسیگنال جریان مؤلفه q استاتور پس از بهینهسازی 78
شکل4-16- نمودارسیگنال جریان مؤلفه d روتور پس از بهینهسازی 79
شکل4-17- نمودارسیگنال جریان مؤلفه q روتور پس از بهینهسازی 79
شکل4-18- نمودارخطای حالت دائمی توان راکتیو استاتور 80
شکل4-19- نمودارخطای حالت دائمی توان راکتیو کانورتر سمت شبکه 80
شکل 4-20- منحنی تغییرات سرعت روتور بر حسب پریونیت 81
شکل 4-21- پاسخ پله توان راکتیو سمت استاتور در سرعت روتور متغیر 82
شکل 4-22- پاسخ پله توان راکتیو فیلتر RL در سرعت روتور متغیر 82
شکل 2-23- نمودار بلوکی کنترلکننده PI 83
شکل4-24- تعییرات سرعت روتور پس از طراحی کنترلکننده PI 83
شکل4-25- پاسخ پله توان راکتیو استاتور پس از طراحی کنترلکننده PI 84
شکل4-26- پاسخ پله توان راکتیو فیلتر RL پس از طراحی کنترلکننده PI 84
شکل4-27- سیگنال ولتاژ مؤلفه d استاتور پس از طراحی کنترلکننده PI 85
شکل4-28- سیگنال ولتاژ مؤلفه d فیلتر RL پس از طراحی کنترلکننده PI 85
چکیده:
بالا بودن ضریب نفوذ باد در سیستمهای الکتریکی متصل به شبکه، چالشهای جدیدی را در رابطه با پایداری سیستمهای قدرت به دنبال دارد. علیرغم ماهیت تصادفی باد، لازم است تا اطمینان به پایداری شبکههای قدرت تضمین شود. از آنجائیکه یکی از نیازهای جدید شرکتهای تولیدکننده برق ازطریق انرژی باد، تنظیم ولتاژ میباشد، این پایاننامه بر روی کنترل توان راکتیو در نیروگاههای بادی مجهز به ماشینهای القایی دوسوتغذیه متمرکز شده است. در این پایان نامه یک نیروگاه بادی 9 مگاواتی شامل شش عدد توربین بادی 5/1 مگاواتی و ژنراتور القایی دو سو تغذیه ( بطوریکه همه توربینها در یک راستا قرار گرفته و بادهای یکسانی را دریافت میکنند) مدلسازی شده است. در این مدل کانورترهای سمت روتور و شبکه با گین یک در نظر گرفته شدهاند. برای کنترل توان راکتیو جاری شده در استاتور و فیلتر RL (این فیلتر کانورتر سمت شبکه را به شبکه متصل میکند) یک کنترلکننده فیدبک حالت و خروجی طراحی شده بطوریکه خروجیها (توانهای راکتیو جاری شده در استاتور و فیلتر RL)، ورودیهای مرجع را دنبال کنند. بعد از طراحی کنترلکننده فیدبک حالت و خروجی، گینهای این کنترل کننده با استفاده از روش نیوتن بهینه سازی شدهاند. در این مدل در ابتدا سرعت روتور برابر با مقدار ثابتی در نظر گرفته شده، از آنجائیکه سرعت روتور در واقع مقدار ثابتی نیست و با تغییر سرعت باد ورودی به توربین، تغییر میکند و باعث نوسانی شدن توانهای راکتیو میگردد، به همین جهت برای کنترل سرعت روتور نیز یک کنترلکننده PI طراحی شده است. نتایج شبیهسازی عملکرد صحیح سیستم پیشنهادی را نشان میدهد.
فصل اول
پیشگفتار
1-1 مقدمه:
در طول بیست سال گذشته، بهدلیل افزایش قیمت، محدود بودن منابع و اثرات مخرب زیست محیطی سوختهای فسیلی، منابع انرژی تجدیدپذیر بسیار مورد توجه قرار گرفتهاند. در همین حال، پیشرفتهای فنآوری، کاهش قیمت و مشوقهای دولتی باعث شده است تا پارهایی از منابع انرژی تجدیدپذیر مقرون به صرفه و در بازار رقابت پذیر باشند. از این میان، انرژی باد یکی از سریعترین منابع انرژی تجدیدپذیری است که به سرعت در حال رشد و توسعه میباشد. انرژی باد سالهای متمادی است که برای آسیاب کردن دانههای کشاورزی، پمپ کردن آب و دریا نوردی بهکار برده شده است.
کاربرد آسیابهای بادی برای تولید برق به اواخر قرن نوزدهم برمیگردد؛ زمانیکه ژنراتور12 KW DC برای آسیابهای بادی ساخته شدند، اما این تنها در دهه 1980 میلادی است که صنعت به بلوغ کافی و لازم برای تولید برق بهگونهای اثر بخش و کارآمد دست مییابد.
در واقع ازسال 1975 پیشرفتهای شگرفی در زمینه توربینهای بادی در جهت تولید برق بهعمل آمده است. در سال1980 اولین توربین برق بادی متصل به شبکه سراسری نصب گردید. بعد از مدت کوتاهی اولین مزرعه برق بادی چند مگاواتی در آمریکا نصب و به بهره برداری رسید. درپایان سال 1990 ظرفیت توربینهای برق بادی متصل به شبکه در جهان به 200MW رسید که توانایی تولید سالانه 3200Gwh برق را داشته که تقریباً تمام این تولید مربوط به ایالات کالیفرنیا آمریکا و کشور دانمارک بود.[1]
امروزه کشورهای دیگر نظیر هلند، آلمان، بریتانیا، ایتالیا، اسپانیا، چین و هندوستان برنامههای ملی ویژهایی را در جهت توسعه و عرضه تجاری انرژی باد آغاز کردهاند.
در طول دو دهه گذشته، مجموعه متنوعی از پیشرفتهای تکنولوژی در صنایع تولید برق بادی بسط و توسعه یافته، بنحویکه نسبت تبدیل مؤثر تولید برق از باد و کاهش هزینه آن به صورت چشمگیری بهبود یافته است. توان توربینهای بادی از چندین کیلووات به چندین و چند مگاوات در هر توربین افزایش یافته است. علاوه بر نصب توربینها برروی خشکی، توربینهای بادی بزرگتر به مناطق ساحلی دریاها رانده شدهاند تا ضمن کاهش اثرات سوء آنها بر مناظر و مناطق خشکی، بتوانند انرژی بیشتری را جذب کنند.
1-2 انرژی باد:
هنگامی که تابش خورشید به طور نامساوی به سطوح ناهموار زمین میرسد سبب ایجاد تغییرات در دما و فشار میگردد و در اثر این تغییرات باد به وجود میآید. همچنین اتمسفر کره زمین به دلیل حرکت وضعی زمین، گرما را از مناطق گرمسیری به مناطق قطبی انتقال میدهد که این امر نیز سبب به وجود آمدن باد میگردد. جریانات اقیانوسی نیز به طو مشابه عمل نموده و عامل 30٪ انتقال حرارت کلی در جهان میباشند. در مقیاس جهانی این جریانات اتمسفری بهصورت یک عامل قوی جهت انتقال حرارت و گرما عمل مینمایند. دوران کره زمین نیز میتواند در برقراری الگوهای نیمه دائم جریانات سیارهایی در اتمسفر، انرژی مضاعف ایجاد نماید. در حقیقت همانطور که عنوان شد باد یکی از صورتهای مختلف انرژی خورشیدی میباشد که دارای یک الگوی جهانی پیوسته است.[2]
تغییرات سرعت باد، ساعتی، روزانه و فصلی بوده و متاثر از هوا و توپولوژی سطح زمین میباشد. بیشتر منابع انرژی باد در نواحی ساحلی و کوهستانی واقع شدهاند.
1-3 مزایای بهره برداری از انرژی باد:
• کاهش میزان مصرف سوختهای فسیلی
• رایگان بودن انرژی باد
• توانایی تأمین بخشی از تقاضای انرژی برق
• کمتر بودن نسبی قیمت انرژی حاصل از باد نسبت به انرژیهای فسیلی
• کمتر بودن هزینههای جاری و هزینههای سرمایه گذاری انرژی باد در بلند مدت
• عدم نیاز به آب
• عدم نیاز به زمین زیاد برای نصب
• کاهش آلودگی محیط زیست
• افزایش قابلیت اطمینان در تولید انرژی برق
مشکلات عمده در نیروگاههای بادی عمدتاً شامل تغییرات در ولتاژ و فرکانس شبکه، عدم تعادل فازها و قطع شدن ناگهانی یک یا تمامی فازها و تغییرات شدید در سرعت باد است که باعث ناپایداری سیستم میشود.[3] در رابطه با هر یک از این مشکلات تحقیقات و مطالعات متعددی صورت پذیرفته است. برای مثال در خصوص مشکلات مرتبط با ماهیت تصادفی باد میتوان به تحقیقهای [4و5] اشاره نمود که در این تحقیقات سیستم دینامیکی غیر خطی توربین بادی مدلسازی شده و یک کنترل کننده فیدبک بهینه تصادفی برای این سیستم طراحی شده است. در تحقیق [6] نیز به ارزیابی و مقایسه توربینهای سرعت ثابت و متغیر جهت بهینه سازی دریافت انرژی بادی پرداخته شده است.
1-4 اهمیت کنترل توان راکتیو در نیروگاههای بادی
با افزایش استفاده از انرژی باد در شبکههای قدرت، تولید توان و پایداری شبکه موضوعاتی کلیدی در دهه اخیر شده است. وابستگی به شرایط واقعی باد همچنان یک فاکتور ریسکی در نگهداری سطح متوازنی میان عرضه انرژی و تقاضای آن به عنوان شرط اصلی برای عملکرد قابل اطمینان از سیستم توان الکتریکی است.[7]
بررسی بهعمل آمده در آمریکا و کانادا در سال 2003 نشان داده که با کنترل توان راکتیو میتوان از قطعیهای متوالی خطوط انتقال و واحدهای تولیدی جلوگیری کرد. بنابراین بعضی از پیشنهادات پیرامون این موضوع ارائه شده است[8].
شرکتهای برق اروپایی راهبردهایی را برای اتصال مزارع بادی به خطوط انتقال با سطح ولتاژ بالا ارائه کردهاند. این استانداردهای شبکه (کدهای شبکه ) الزامات مشابهی (نظیر پایداری شبکه در عملکرد عادی و تحت شرایط خطا) که برای سیستمهای تولیدی متداول بوده را، برای مبدلهای توان بادی نیز وضع کردهاند. در مدت عملکرد نرمال، این استانداردها (پایداری شبکه در عملکرد عادی و تحت شرایط خطا) به معنای قابلیت تنظیم فرکانس، از طریق کنترل توان اکتیو و تنظیم ولتاژ از طریق کنترل توان راکتیو است.
یکی از انواع توربینهای بادی سرعت متغیر، توربینهای بادی با ژنراتورالقایی دو سو تغذیه (DFIG) میباشد که امروزه به عنوان یکی از رایجترین و پرطرفدارترین توربینهای بادی در جهان بهحساب میآید. در این پایان نامه یک مزرعه بادی مجهز به این نوع توربین بادی به همراه سیستم کنترل توان راکتیو با استفاده از نرم افزار متلب ارئه شده است.
تا کنون روشهای مختلفی برای کنترل توان توربینهای بادی DFIG ارائه شده است که از جمله آن میتوان به تولید توان اکتیو تحت شرایط نامتعادل [10]، کنترل جداگانه گشتاور الکترومغناطیسی و توان راکتیو برای ژنراتورهای دو سو تغذیه (DFIG)[11]، کنترل توان با استفاده از ازکانورتر منبع جریان [12] و کاربرد کانورتر سمت شبکه به صورت یک فیلتر اکتیو موازی برای تولید توان راکتیو و جبران هارمونیک و استفاده از اینورتر سمت روتور (RSI) تنها برای تولید توان اکتیو [13] ارائه شده است.
1-5 پیکربندی پایان نامه
در این پایاننامه، در ابتدا در فصل دو اجزای مختلف سیستمهای بادی معرفی شده، نحوه تولید توان در توربین توصیف و پارامترهای مهم توربین معرفی شده است. انواع توربین از لحاظ سیستم عملکرد (سرعت ثابت یا سرعت متغیر) مورد بررسی قرار گرفته، فعالیتهای قابل کنترل در توربین بادی و چگونگی کنترل توربینهای مختلف توضیح داده شده است. در انتها نیز مزایا و معایب انواع ژنراتورهای قابل استفاده در سیستمهای بادی (سنکرون، جریان مستقیم و القائی) بیان گردیده است.
در فصل سه توصیف مفصلی از ژنراتورهای القایی دو سو تغذیه، حالتهای فوق سنکرون و زیر سنکرون آنها ارائه شده، توضیحاتی نیز پیرامون تبدیل قابهای مرجع و مدلهای ژنراتور (مدل بردار- فضا، مدل قاب مرجع dq) ارائه گردیده است. در نهایت تبدیل پارامترها در سیستم پریونیت و توصیف روشهای کنترل همراستای ولتاژ و کنترل همراستای میدان، مورد بحث و بررسی قرار گرفته است.
مطالب ارائه شده در فصل چهارم را میتوان به شرح ذیل دسته بندی کرد:
• مروری بر تحقیقات انجام شده در زمینه کنترل توان درDFIG
• بیان فضای حالت سیستم
• توصیف روش طراحی با جایدهی قطب
• طراحی کنترلکننده برای مدل تقویت شده
• طراحی کنترلکننده PI برای کنترل سرعت روتور
در انتها نیز نتایج شبیه سازی ارائه شده است و در فصل آخر(پنجم) نتیجهگیری و پیشنهادات آورده شده است.
در پایان ضمائم و مراجع بهکار رفته به تفصیل ارائه گردیده است.
فهرست مطالب
چکیده
1
فصل اول : پیشگفتار
2
1-1 مقدمه
3
1-2 انرژی باد
4
1-3 مزایای بهره برداری از انرژی باد
4
1-4 اهمیت کنترل توان راکتیو در نیروگاه بادی
5
1-5 پیکربندی پایان نامه
6
فصل دوم : مشخصههای سیستمهای بادی
7
2-1 مقدمه
8
2-2- فنآوری توربینهای بادی
9
2-2-1- اجزای اصلی توربین بادی
11
2-2-2- چگونگی تولید توان در سیستمهای بادی
12
2-2-3- منحنی پیش بینی توان توربین بادی
13
2-2-4- پارامترهای مهم در توربین بادی
13
2-3- انواع توربینها از لحاظ سیستم عملکرد
14
2-3-1- عملکرد توربینهای سرعت ثابت
14
2-3-1-1- توربینهای ممانعت قابل تنظیم سرعت ثابت
15
2-3-1-2- توربینهای ممانعت تنظیم شده دو سرعتی
15
2-3-1-3- توربینهای زاویة گام قابل تنظیم فعال سرعت ثابت
16
2-3-1-4- توربینهای زاویة گام قابل تنظیم غیر فعال
16
2-3-2- الگوی عملکرد سرعت متغیر
16
2-3-2-1- توربینهای ممانعت تنظیم شده سرعت متغیر
17
2-3-2-2- توربینهای سرعت متغیر با زاویة گام قابل تنظیم فعال
17
2-3-2-3- توربینهای سرعت متغیر با محدوده عملکرد کوچک
18
2-4- کنترل توربین بادی
18
2-4-1- فعالیتهای قابل کنترل در توربینهای بادی
19
2-4-1-1- کنترل گشتاور آیرودینامیکی
19
2-4-1-2- کنترل گشتاور ژنراتور
20
2-4-1-3- کنترل گشتاور ترمز
20
2-4-1-4- کنترل جهت گیری دوران حول محور قائم
21
2-4-2- کلیات عملکرد توربینهای متصل به شبکه
21
2-5- ژنراتورهای مورد استفاده در توربینهای بادی
22
2-5-1- ژنراتورهای سنکرون
23
2-5-2- ژنراتورهای جریان مستقیم
24
2-5-3- ژنراتورهای القائی
25
2-5-4- تحلیل عملکرد ژنراتور القائی
25
2-5-4-1- راهاندازی توربین بادی با ژنراتور القائی
26
2-5-4-2- تحلیل دینامیک ماشین القائی
27
2-5-4-3- شرایط عملکرد خارج از محدوه طراحی
28
2-5-4-4- مشخصه ژنراتور القایی دو سوتغذیه
28
خلاصه فصل 2
30
فصل سوم : مدلسازی ژنراتور القائی با تغذیه دوبل
31
3-1- مقدمه
32
3-2- عملکرد فوق سنکرون و زیر سنکرون ژنراتور القایی دو سو تغذیه
33
3-3- تبدیل قاب مرجع
35
3-3-1- تبدیل قاب مرجع abc/dq
35
3-3-2- تبدیل قاب مرجع abc به
39
3-4- مدلهای ژنراتور القایی
39
3-4-1- مدل بردار-فضا
40
3-4-2- مدل قاب مرجع dq
43
3-5- مدل مرتبه 3 ژنراتور القایی دو سو تغذیه
45
3-6- بیان پارامترها در سیستم پریونیت
45
3-7- کنترل اینورتر متصل به شبکه
47
3-8- کنترل چرخش ولتاژ(VOC)
48
3-9- کنترل چرخش میدان(FOC)
51
خلاصه فصل 3
53
فصل چهارم : طراحی کنترلکننده بهینه فیدبک حالت و خروجی
54
4-1- مقدمه
55
4-2- مروری بر تحقیقات انجام شده در زمینه کنترل توان در DFIG
56
4-3- توصیف سیستم
58
4-4- مدل توربین بادی
59
4-5- مدل ژنراتور القایی دو سو تغذیه
60
4-6- مدل جعبه دنده
61
4-7- مدل فیلتر RL
62
4-8- فضای حالت سیستم
64
4-9- طراحی با جایدهی قطب
67
4-10- طراحی کنترلکننده برای مدل تقویت شده
71
4-11-شبیه سازی
73
4-12- طراحی کنترلکننده PI جهت کنترل سرعت روتور (wr)
83
خلاصه
86
فصل پنجم : نتیجه گیری و پیشنهادات
87
پیوستها
91
منابع و مأخذ
92
فهرست منابع فارسی
93
فهرست منابع لاتین
95
چکیده انگلیسی
96
صفحه عنوان انگلیسی
97
اصالت نامه
98
چکیده:
بالا بودن ضریب نفوذ باد در سیستمهای الکتریکی متصل به شبکه، چالشهای جدیدی را در رابطه با پایداری سیستمهای قدرت به دنبال دارد. علیرغم ماهیت تصادفی باد، لازم است تا اطمینان به پایداری شبکههای قدرت تضمین شود. از آنجائیکه یکی از نیازهای جدید شرکتهای تولیدکننده برق ازطریق انرژی باد، تنظیم ولتاژ میباشد، این پایاننامه بر روی کنترل توان راکتیو در نیروگاههای بادی مجهز به ماشینهای القایی دوسوتغذیه متمرکز شده است. در این پایان نامه یک نیروگاه بادی 9 مگاواتی شامل شش عدد توربین بادی 5/1 مگاواتی و ژنراتور القایی دو سو تغذیه ( بطوریکه همه توربینها در یک راستا قرار گرفته و بادهای یکسانی را دریافت میکنند) مدلسازی شده است. در این مدل کانورترهای سمت روتور و شبکه با گین یک در نظر گرفته شدهاند. برای کنترل توان راکتیو جاری شده در استاتور و فیلتر RL (این فیلتر کانورتر سمت شبکه را به شبکه متصل میکند) یک کنترلکننده فیدبک حالت و خروجی طراحی شده بطوریکه خروجیها (توانهای راکتیو جاری شده در استاتور و فیلتر RL)، ورودیهای مرجع را دنبال کنند. بعد از طراحی کنترلکننده فیدبک حالت و خروجی، گینهای این کنترل کننده با استفاده از روش نیوتن بهینه سازی شدهاند. در این مدل در ابتدا سرعت روتور برابر با مقدار ثابتی در نظر گرفته شده، از آنجائیکه سرعت روتور در واقع مقدار ثابتی نیست و با تغییر سرعت باد ورودی به توربین، تغییر میکند و باعث نوسانی شدن توانهای راکتیو میگردد، به همین جهت برای کنترل سرعت روتور نیز یک کنترلکننده PI طراحی شده است. نتایج شبیهسازی عملکرد صحیح سیستم پیشنهادی را نشان میدهد.
برای خرید این پایان نامه بر روی کلمه ی " خرید محصول" کلیک کنید
طراحی و شبیه سازی کنترلکننده های هوشمند بهینه برای کنترل بار فرکانس توربین های بادی
99 صفحه در قالب word
فهرست مطالب
فصل1: مقدمه
2
۱-۱ طرح مسئله
2
۲-۱ اهداف تحقیق
۳
۳-۱ معرفی فصل های مورد بررسی در این تحقیق
۴
فصل2: انرژی باد و انواع توربین های بادی
۵
۱-۲ انرژی باد
۶
۱-۱-۲ منشا باد
۶
۲-۱-۲ پیشینه استفاده از باد
۷
۳-۱-۲ مزایای انرژی بادی
۸
۴-۱-۲ ناکارآمدیهای انرژی بادی
۹
۵-۱-۲ وضعیت استفاده از انرژی باد در سطح جهان
۱۰
۲-۲ فناوری توربین های بادی
۱۱
۱-۲-۲ توربینهای بادی با محور چرخش افقی
۱۲
۲-۲-۲ توربینهای بادی با محور چرخش عمودی
۱۲
۳-۲-۲ اجزای اصلی توربین بادی
۱۴
۴-۲-۲ چگونگی تولید توان در سیستم های بادی
۱۵
۱-۴-۲-۲ منحنی پیش بینی توان توربین باد
۱۵
۳-۲ تقسیم بندی سیستم های تبدیل کننده انرژی باد (WECS) بر اساس نحوه عملکرد
۲۰
۱-۳-۲ سیستم های تبدیل کننده انرژی باد (WECS) سرعت ثابت
۲۰
۲-۳-۲ سیستم های تبدیل کننده انرژی باد (WECS) سرعت متغیر
۲۲
۳-۳-۲ سیستم های تبدیل کننده انرژی باد بر مبنای ژنراتور القایی با تغذیه دوگانه (DFIG)
۲۴
۴-۳-۲ سیستم های تبدیل کننده انرژی باد مجهز به توربین های سرعت متغیر با مبدل فرکانسی با ظرفیت کامل
۲۶
فصل۳: تاریخچه کنترل فرکانس سیستم های قدرت در حضور واحدهای بادی، معرفی مدل ریاضی و الگوریتم ازدحام ذرات
۲۷
۱-۳ مرورری بر کارهای انجام شده
۲۹
۲-۳ کنترل DFIG
۳۳
۳-۳ مدل دینامیکی سیستم تنظیم فرکانس توربین بادی با ژنراتور القایی تغذیه دوگانه
۳۶
۴-۳ مدل دینامیکی ساختار تنظیم فرکانس سیستم تک ناحیه ای در حضور توربین بادی با ژنراتور القایی تغذیه دوگانه (DFIG)
۴۰
۵-۳ الگوریتم حرکت گروهی پرندگان یا ازدحام ذرات PSO
۴۴
۶-۳ نتیجه گیری
۴۷
فصل۴: طراحی کنترل کننده PI بهینه سازی شده توسط الگوریتم ازدحام ذرات
۴۸
۱-۴ بهینه سازی طراحی کنترلکننده PI با استفاده از روش بهینه سازی هوشمند ازدحام ذرات (PSO)
۴۹
۱-۱-۴ نتایج شبیه سازی کنترل کننده PI بهینه سازی شده با الگوریتم PSO
۵۳
۴-۲ نتیجه گیری
۵۹
فصل پنجم: طراحی کنترل کننده فازی
۶۱
۱-۵ منطق فازی
۶۲
۱-۱-۵ تعریف مجموعه فازی
۶۲
۲-۱-۵ مزایای استفاده از منطق فازی
۶۳
۵-۲ طراحی کنترل کننده فازی
۶۴
۱-۲-۵ ساختار یک کنترل کننده فازی
۶۴
۱-۱-۲-۵ فازی کننده
۶۵
۲-۱-۲-۵ پایگاه قواعد
۶۶
۳-۱-۲-۵ موتور استنتاج
۶۶
۴-۱-۲-۵ غیر فازی ساز
۶۷
۳-۵ طراحی کنترلکننده فازی بهینه شده با الگوریتم PSO
۶۸
5-3-1 نتایج شبیه سازی
۷۲
فصل ششم: نتیجه گیری و پیشنهادات
78
۱-۶ نتیجه گیری
۷۹
۲-۶ پیشنهادات
۸۱
چکیده
امروزه با توجه به نیاز روزافزون بشر به انرژی از یک سو و کاهش منابع سنتی انرژی از سویی دیگر، نیاز به یافتن منابع جدید انرژی به روشنی احساس می گردد. جایگزینی منابع فسیلی با انرژی های نو و تجدیدپذیر راهکاری است که مدت هاست مورد توجه کشورهای پیشرفته جهان قرار گرفته است. در بین منابع انرژی های نو، انرژی باد به دلیل پاک و پایان ناپذیر بودن، داشتن قابلیت تبدیل به انرژی الکتریکی و رایگان بودن گزینه مناسبی برای این منظور می باشد. مشکل عمده در بهره برداری از آن این است که تغییرات لحظه ای سرعت باد باعث ایجاد نوسانات در توان خروجی توربین بادی می شود که این نوسانات به شکل تغییر فرکانس در سرتاسر سیستم منعکس می شود و عملکرد سیستم را تحت تاثیر قرار می دهد. به صورت سنتی وظیفه کنترل فرکانس به عهده واحد های تولید کننده انرژی سنتی می باشد اما با افزایش مشارکت واحدهای تولید بادی در تولید انرژی برای بهبود عملکرد سیستم، آنها نیز باید در کنترل فرکانس شرکت کنند.
این پایانامه به بررسی نقش مشارکت واحدهای تولید بادی درکنترل فرکانس پرداخته است و برای کنترل فرکانس، کنترل هر چه بهتر تغییرات سرعت توربین های بادی پیشنهاد شده است. ابتدا سیستم قدرت مورد نظر با استفاده از کنترل کننده PI کلاسیک برای کنترل کردن سرعت ژنراتور توربین بادی شبیه سازی شده و در ادامه به منظور بهبود عملکرد سیستم، بهینه سازی تنظیم پارامترهای کنترل کننده PI با الگوریتم بهینه سازی هوشمند ازدحام ذرات پیشنهاد شده است. در پایان به علت اینکه سیستم های قدرت در حضور واحدهای بادی در معرض تغییر پارامترها و عدم قطعیت های زیادی قرار می گیرند جایگزینی کنترل کننده PI با کنترل کننده فازی پیشنهاد شده است که غیر خطی می باشد و عملکرد مقاومتری نسبت به تغییر پارامترهای سیستم از خود نشان می دهد. بدیهی است با بهینه سازی کنترل کننده فازی مورد نظر با الگوریتم بهینه سازی هوشمند ازدحام ذرات نتایج مطلوب تری بدست می آید.
کلید واژه: کنترل فرکانس سیستم قدرت- سیستم های تبدیل کننده انرژی باد- کنترل کننده PI – کنترل کننده فازی- الگوریتم ازدحام ذرات
ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
متن کامل را می توانید در ادامه دانلود نمائید
چون فقط تکه هایی از متن پایان نامه برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل پایان نامه همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است
طراحی کنترلکننده بهینه فیدبک حالت و خروجی توان راکتیو در نیروگاههای بادی مجهز به DFIG
108 صفحه در قالب word
فهرست مطالب
چکیده
1
فصل اول : پیشگفتار
2
1-1 مقدمه
3
1-2 انرژی باد
4
1-3 مزایای بهره برداری از انرژی باد
4
1-4 اهمیت کنترل توان راکتیو در نیروگاه بادی
5
1-5 پیکربندی پایان نامه
6
فصل دوم : مشخصههای سیستمهای بادی
7
2-1 مقدمه
8
2-2- فنآوری توربینهای بادی
9
2-2-1- اجزای اصلی توربین بادی
11
2-2-2- چگونگی تولید توان در سیستمهای بادی
12
2-2-3- منحنی پیش بینی توان توربین بادی
13
2-2-4- پارامترهای مهم در توربین بادی
13
2-3- انواع توربینها از لحاظ سیستم عملکرد
14
2-3-1- عملکرد توربینهای سرعت ثابت
14
2-3-1-1- توربینهای ممانعت قابل تنظیم سرعت ثابت
15
2-3-1-2- توربینهای ممانعت تنظیم شده دو سرعتی
15
2-3-1-3- توربینهای زاویة گام قابل تنظیم فعال سرعت ثابت
16
2-3-1-4- توربینهای زاویة گام قابل تنظیم غیر فعال
16
2-3-2- الگوی عملکرد سرعت متغیر
16
2-3-2-1- توربینهای ممانعت تنظیم شده سرعت متغیر
17
2-3-2-2- توربینهای سرعت متغیر با زاویة گام قابل تنظیم فعال
17
2-3-2-3- توربینهای سرعت متغیر با محدوده عملکرد کوچک
18
2-4- کنترل توربین بادی
18
2-4-1- فعالیتهای قابل کنترل در توربینهای بادی
19
2-4-1-1- کنترل گشتاور آیرودینامیکی
19
2-4-1-2- کنترل گشتاور ژنراتور
20
2-4-1-3- کنترل گشتاور ترمز
20
2-4-1-4- کنترل جهت گیری دوران حول محور قائم
21
2-4-2- کلیات عملکرد توربینهای متصل به شبکه
21
2-5- ژنراتورهای مورد استفاده در توربینهای بادی
22
2-5-1- ژنراتورهای سنکرون
23
2-5-2- ژنراتورهای جریان مستقیم
24
2-5-3- ژنراتورهای القائی
25
2-5-4- تحلیل عملکرد ژنراتور القائی
25
2-5-4-1- راهاندازی توربین بادی با ژنراتور القائی
26
2-5-4-2- تحلیل دینامیک ماشین القائی
27
2-5-4-3- شرایط عملکرد خارج از محدوه طراحی
28
2-5-4-4- مشخصه ژنراتور القایی دو سوتغذیه
28
خلاصه فصل 2
30
فصل سوم : مدلسازی ژنراتور القائی با تغذیه دوبل
31
3-1- مقدمه
32
3-2- عملکرد فوق سنکرون و زیر سنکرون ژنراتور القایی دو سو تغذیه
33
3-3- تبدیل قاب مرجع
35
3-3-1- تبدیل قاب مرجع abc/dq
35
3-3-2- تبدیل قاب مرجع abc به
39
3-4- مدلهای ژنراتور القایی
39
3-4-1- مدل بردار-فضا
40
3-4-2- مدل قاب مرجع dq
43
3-5- مدل مرتبه 3 ژنراتور القایی دو سو تغذیه
45
3-6- بیان پارامترها در سیستم پریونیت
45
3-7- کنترل اینورتر متصل به شبکه
47
3-8- کنترل چرخش ولتاژ(VOC)
48
3-9- کنترل چرخش میدان(FOC)
51
خلاصه فصل 3
53
فصل چهارم : طراحی کنترلکننده بهینه فیدبک حالت و خروجی
54
4-1- مقدمه
55
4-2- مروری بر تحقیقات انجام شده در زمینه کنترل توان در DFIG
56
4-3- توصیف سیستم
58
4-4- مدل توربین بادی
59
4-5- مدل ژنراتور القایی دو سو تغذیه
60
4-6- مدل جعبه دنده
61
4-7- مدل فیلتر RL
62
4-8- فضای حالت سیستم
64
4-9- طراحی با جایدهی قطب
67
4-10- طراحی کنترلکننده برای مدل تقویت شده
71
4-11-شبیه سازی
73
4-12- طراحی کنترلکننده PI جهت کنترل سرعت روتور (wr)
83
خلاصه
86
فصل پنجم : نتیجه گیری و پیشنهادات
87
پیوستها
91
منابع و مأخذ
92
فهرست منابع فارسی
93
فهرست منابع لاتین
95
چکیده انگلیسی
96
صفحه عنوان انگلیسی
97
اصالت نامه
98
چکیده:
بالا بودن ضریب نفوذ باد در سیستمهای الکتریکی متصل به شبکه، چالشهای جدیدی را در رابطه با پایداری سیستمهای قدرت به دنبال دارد. علیرغم ماهیت تصادفی باد، لازم است تا اطمینان به پایداری شبکههای قدرت تضمین شود. از آنجائیکه یکی از نیازهای جدید شرکتهای تولیدکننده برق ازطریق انرژی باد، تنظیم ولتاژ میباشد، این پایاننامه بر روی کنترل توان راکتیو در نیروگاههای بادی مجهز به ماشینهای القایی دوسوتغذیه متمرکز شده است. در این پایان نامه یک نیروگاه بادی 9 مگاواتی شامل شش عدد توربین بادی 5/1 مگاواتی و ژنراتور القایی دو سو تغذیه ( بطوریکه همه توربینها در یک راستا قرار گرفته و بادهای یکسانی را دریافت میکنند) مدلسازی شده است. در این مدل کانورترهای سمت روتور و شبکه با گین یک در نظر گرفته شدهاند. برای کنترل توان راکتیو جاری شده در استاتور و فیلتر RL (این فیلتر کانورتر سمت شبکه را به شبکه متصل میکند) یک کنترلکننده فیدبک حالت و خروجی طراحی شده بطوریکه خروجیها (توانهای راکتیو جاری شده در استاتور و فیلتر RL)، ورودیهای مرجع را دنبال کنند. بعد از طراحی کنترلکننده فیدبک حالت و خروجی، گینهای این کنترل کننده با استفاده از روش نیوتن بهینه سازی شدهاند. در این مدل در ابتدا سرعت روتور برابر با مقدار ثابتی در نظر گرفته شده، از آنجائیکه سرعت روتور در واقع مقدار ثابتی نیست و با تغییر سرعت باد ورودی به توربین، تغییر میکند و باعث نوسانی شدن توانهای راکتیو میگردد، به همین جهت برای کنترل سرعت روتور نیز یک کنترلکننده PI طراحی شده است. نتایج شبیهسازی عملکرد صحیح سیستم پیشنهادی را نشان میدهد.
ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
متن کامل را می توانید در ادامه دانلود نمائید
چون فقط تکه هایی از متن پایان نامه برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل پایان نامه همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است