یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

دانلود پروژه پژوهشی با موضوع بررسی انواع تجهیزات خانواده FACTS

اختصاصی از یارا فایل دانلود پروژه پژوهشی با موضوع بررسی انواع تجهیزات خانواده FACTS دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه پژوهشی با موضوع بررسی انواع تجهیزات خانواده FACTS


دانلود پروژه پژوهشی با موضوع بررسی انواع تجهیزات خانواده FACTS

دانلود پروژه پژوهشی کارشناسی مهندسی برق – قدرت با موضوع بررسی انواع تجهیزات خانواده FACTS 

نوع فایل : Word 

تعداد صفحات : 59

فهرست محتوا

فصل اول : پیشگفتار
1-1 مقدمه 1
1-2 محدودیت های انتقال توان در سیستم های قدرت
1-2-1 عبور توان در مسیرهای ناخواسته 1
1-2-2 ضرفیت توان خطوط انتقال 3
1-3 مشخصه باپذیری خطوط انتقال 3
1-3-1 محدودیت حرارتی 4
1-3-2 محدودیت افت ولتاژ 5
1-3-3 محدودیت پایداری 6
1-4 راه حل‌ها
1-4-1 کاهش امپدانس خط با نصب خازن سری 77
1-4-2 بهبود پرفیل ولتاژ در وسط خط 8
1-4-3 کنترل توان با تغییر زاویه قدرت 8
1-5 راه حل‌های‌ کلاسیک 9
1-5-1 بانک‌های خازنی سری با کلیدهای مکانیکی 9
1-5-2 بانک‌های خازنی وراکتوری موازی قابل کنترل با کلیدهای مکانیکی 9
1-5-3 جابجاگر فاز 9
فصل دوم : آشنایی اجمالی با ادوات FACTS
2-1 مقدمه 11
2-2 انواع اصلی کنترل کننده های FACTS 11
2-2-1 کنترل کننده‌های سری 11
2-2-1-1 جبران ساز سنکرون استاتیکی به صورت سری(SSSC) 11
2-2-1-2 کنترل کننده‌های انتقال توان میان خط(IPFC) 12
2-2-1-3 خازن سری با کنترل تریستوری (TCSC) 12
2-2-1-4 خازن سری قابل کلیدزنی با تریستور (TSSSC) 12
2-2-1-5 خازن سری قابل کلید زنی با تریستور (TSSC) 12
2-2-1-6 راکتور سری قابل کلید زنی با تریستور (TSSR) 13
2-2-1-7 راکتور با کنترل تریستوری (TCSR) 13
2-2-2 کنترل کننده‌های موازی 13
2-2-2-1 جبران کننده سنکرون استاتیکی(STATCOM) 13
2-2-2-2 مولد سنکرون استاتیکی (SSG) 13
2-2-2-3 جبران ساز توان راکتیو استاتیکی(SVC) 14
2-2-2-4 راکتور قابل کنترل با تریستور (TCR) 14
2-2-2-5 راکتور قابل کلیدزنی با تریستور(TSR) 14
2-2-2-6 خازن قابل کلیدزنی با تریستور (TSC) 14
2-2-2-7 مولد یا جذب کننده توان راکتیو (SVG) 15
2-2-2-8 سیستم توان راکتیو استاتیکی (SVS) 15
2-2-2-9 ترمز مقاومتی با کنترل تریستوری (TCBR) 15
2-2-3 کنترل کننده ترکیبی سری – موازی 15
2-2-3-1 کنترل کننده یکپارچه انتقال توان (UPFC) 15
2-2-3-2 محدود کننده ولتاژ با کنترل تریستوری(TCVL) 16
2-2-3-3 تنظیم کننده ولتاژ با کنترل تریتسوری (TCVR) 16
2-2-3-4 جبران‌سازهای استاتیکی توان راکتیو SVC و STATCOM 16
2-3 مقایسه میان SVC و STATCOM 17
2-4 خازن سری کنترل شده با تریستور GTO (GCSC) 18
2-5 خازن سری سوئیچ شده با تریستور (TSSC) 18
2-6 خازن سری کنترل شده با تریستور (TCSC) 19
فصل سوم : بررسی انواع کاربردی ادوات FACTS
3-1 مقدمه 20
3-2 منبع ولتاژ سنکرون بر پایه سوئیچینگ مبدل 20
3-3 کنترل کننده توان عبوری بین خطی (IPFC) 23
3-4 جبرانگر سنکرون استاتیکی سری (SSSC) 28
3-5 جبرانگر سنکرون استاتیکی (STATCOM) 31
3-6 آشنایی با UPFC 35
3-6-1 تاثیر UPFC بر منحنی بارپذیری 36
3-6-2 معرفی UPFC 36
3-7 آشنایی با SMES 38
3-7-1 نحوه کار سیستم SMES 38
3-7-2 مقایسه SMES با دیگر ذخیره کننده های انرژی 40
3-8 آشنایی با UPQC 40
3-8-1 ساختار و وظایف UPQC 41
3-9 آشنایی با HVDCLIGHT 42
3-9-1 مزایای سیستم HVDCLIGHT 43
3-9-2 کاربرد سیستم HVDCLIGHT 44
3-9-3 عیب سیستم HVDCLIGHT 46
3-9-4 بررسی اضافه ولتاژهای داخلی در خطوط انتقال قدرت HVDC 46
3-10 مقایسه SCC و TCR از دیدگاه هارمونیک های تزریقی به شبکه توزیع 47
3-11 SVC 49
3-12 مبدل های منبع ولتاژ VSC 51
فصل چهارم : نتیجه گیری 55
منابع 58


دانلود با لینک مستقیم


دانلود پروژه پژوهشی با موضوع بررسی انواع تجهیزات خانواده FACTS

کنترل و پایداری سیستم های قدرت توسط ادوات FACTS

اختصاصی از یارا فایل کنترل و پایداری سیستم های قدرت توسط ادوات FACTS دانلود با لینک مستقیم و پرسرعت .

کنترل و پایداری سیستم های قدرت توسط ادوات FACTS


کنترل و پایداری سیستم های قدرت توسط ادوات FACTS

 

 

 

 

 

 

مقدمه

این نوشتار عهده دار معرفی ادوات جدید سیستم های مدرن انتقال انرژی می‌باشد که تحول زیادی را در بهره‌برداری و کنترل سیستمهای قدرت ایجاد خواهد کرد.

با رشد روز افزون مصرف،سیستمهای انتقال انرژی با بحران محدودیت انتقال توان مواجه هستند.این محدودیتها عملاً بخاطر حفظ پایداری و تامین سطح مجاز ولتاژ بوجود می‌آیند.بنابراین ظرفیت بهره‌برداری عملی خطوط انتقال بسیار کمتر از ظرفیت واقعی خطوط که همان حد حرارتی آنهاست ، می‌باشد.این امر موجب عدم بهره برداری بهینه از سیستم‌های انتقال انرژی خواهد شد.یکی از راههای افزایش ظرفیت انتقال توان‌،‌احداث خطوط جدید است که این امر هم چندان ساده نیست ومشکلات فراوانی را به همراه دارد.

با پیشرفت صنعت نیمه هادیها و استفاده آنها در سیستم قدرت،مفهوم سیستم های انتقال انرژی انعطاف‌پذیر(FACTS) مطرح شد که بدون احداث خطوط جدید بتوان از ظرفیت واقعی سیستم انتقال استفاده کرد.

پیشرفت اخیر صنعت الکترونیک در طراحی کلیدهای نیمه هادی با قابلیت خاموش شدن و استفاده از آن در مبدل های منبع ولتاژ در سطح توان و ولتاژ سیستم قدرت علاوه بر معرفی ادوات جدیدتر،تحولی در مفهوم FACTS بوجود آورد و سیستمهای انتقال انرژی را بسیار کارآمدتر و موثرتر خواهد کرد .

برای درک بهتر و شناساندن مشخصات برجسته این ادوات درقدم اول لازم است مشکلات موجود سیستم های انتقال انرژی شناسائی شوند.آنگاه راه حل های کلاسیک برای رفع آنها بیان می شوند.مبدل‌های منبع ولتاژ،که ساختار کلیه ادوات جدید FACTS بر آن استوار است در بخش بعدی مورد بحث قرار
می گردد و در خاتمه نسل جدید ادوات FACTS معرفی می شوند

فهرست مطالب
فصل اول : پیشگفتار
۱-۱ مقدمه  ۱
۱-۲  محدودیت های انتقال توان در سیستم های قدرت
۱-۲-۱ عبور توان در مسیرهای ناخواسته  ۱
۱-۲-۲  ضرفیت توان خطوط انتقال  ۳
۱-۳ مشخصه باپذیری خطوط انتقال  ۳
۱-۳-۱ محدودیت حرارتی ۴
۱-۳-۲ محدودیت افت ولتاژ ۵
۱-۳-۳ محدودیت پایداری  ۶
۱-۴ راه حل‌ها
۱-۴-۱ کاهش امپدانس خط با نصب خازن سری ۷
۱-۴-۲ بهبود پرفیل ولتاژ در وسط خط  ۸
۱-۴-۳ کنترل توان با تغییر زاویه قدرت  ۸
۱-۵ راه حل‌های‌ کلاسیک ۹
۱-۵-۱ بانک‌های خازنی سری با کلیدهای مکانیکی ۹
۱-۵-۲ بانک‌های خازنی وراکتوری موازی قابل کنترل با کلیدهای مکانیکی  ۹
۱-۵-۳ جابجاگر فاز ۹
فصل دوم : آشنایی اجمالی با ادوات FACTS
۲-۱ مقدمه ۱۱
۲-۲ انواع اصلی کنترل کننده های FACTS 11
۲-۲-۱ کنترل کننده‌های سری ۱۱
۲-۲-۱-۱ جبران ساز سنکرون استاتیکی به صورت سری(SSSC) 11
۲-۲-۱-۲ کنترل کننده‌های انتقال  توان میان خط(IPFC) 12
۲-۲-۱-۳ خازن سری با کنترل تریستوری (TCSC) 12
۲-۲-۱-۴ خازن سری قابل کلیدزنی با تریستور (TSSSC) 12
۲-۲-۱-۵ خازن سری قابل کلید زنی با تریستور (TSSC) 12
۲-۲-۱-۶ راکتور سری قابل کلید زنی با تریستور (TSSR) 13
۲-۲-۱-۷ راکتور با کنترل تریستوری (TCSR) 13
۲-۲-۲ کنترل کننده‌های موازی  ۱۳
۲-۲-۲-۱ جبران کننده سنکرون استاتیکی(STATCOM)  ۱۳
۲-۲-۲-۲ مولد سنکرون استاتیکی (SSG) 13
۲-۲-۲-۳ جبران ساز توان راکتیو استاتیکی(SVC) 14
۲-۲-۲-۴ راکتور قابل کنترل با تریستور (TCR) 14
۲-۲-۲-۵ راکتور قابل کلیدزنی با تریستور(TSR) 14
۲-۲-۲-۶ خازن قابل کلیدزنی با تریستور (TSC) 14
۲-۲-۲-۷ مولد یا جذب کننده توان راکتیو (SVG) 15
۲-۲-۲-۸ سیستم توان راکتیو استاتیکی (SVS) 15
۲-۲-۲-۹ ترمز مقاومتی با کنترل تریستوری (TCBR) 15
۲-۲-۳ کنترل کننده ترکیبی سری – موازی  ۱۵
۲-۲-۳-۱ کنترل کننده یکپارچه انتقال  توان (UPFC) 15
۲-۲-۳-۲ محدود کننده ولتاژ با کنترل تریستوری(TCVL) 16
۲-۲-۳-۳ تنظیم کننده ولتاژ با کنترل تریتسوری (TCVR) 16
۲-۲-۳-۴ جبران‌سازهای استاتیکی توان راکتیو SVC و STATCOM 16
۲-۳ مقایسه میان SVC و STATCOM 17
۲-۴ خازن سری کنترل شده با تریستور GTO (GCSC) 18
۲-۵ خازن سری سوئیچ شده با تریستور (TSSC) 18
۲-۶ خازن سری کنترل شده با تریستور (TCSC) 19
فصل سوم : بررسی انواع کاربردی ادوات FACTS
۳-۱ مقدمه  ۲۰
۳-۲ منبع ولتاژ سنکرون بر پایه سوئیچینگ مبدل  ۲۰
۳-۳ کنترل کننده توان عبوری بین خطی (IPFC) 23
۳-۴ جبرانگر سنکرون استاتیکی سری (SSSC) 28
۳-۵ جبرانگر سنکرون استاتیکی (STATCOM) 31
۳-۶ آشنایی با UPFC 35
۳-۶-۱ تاثیر UPFC بر منحنی بارپذیری ۳۶
۳-۶-۲ معرفی UPFC 36
۳-۷ آشنایی با SMES 38
۳-۷-۱ نحوه کار سیستم SMES 38
۳-۷-۲ مقایسه SMES با دیگر ذخیره کننده های انرژی  ۴۰
۳-۸ آشنایی با UPQC 40
۳-۸-۱ ساختار و وظایف UPQC 41
۳-۹ آشنایی با HVDCLIGHT 42
۳-۹-۱ مزایای سیستم HVDCLIGHT 43
۳-۹-۲ کاربرد سیستم HVDCLIGHT 44
۳-۹-۳ عیب سیستم HVDCLIGHT 46
۳-۹-۴ بررسی اضافه ولتاژهای داخلی در خطوط انتقال قدرت HVDC 46
۳-۱۰ مقایسه SCC  و TCR از دیدگاه هارمونیک های تزریقی به شبکه توزیع  ۴۷
۳-۱۱ SVC 49
۳-۱۲ مبدل های منبع ولتاژ VSC 51
فصل چهارم : نتیجه گیری ۵۵
منابع ۵۸


دانلود با لینک مستقیم

جبرانسازی توان راکتیو با ادوات FACTS

اختصاصی از یارا فایل جبرانسازی توان راکتیو با ادوات FACTS دانلود با لینک مستقیم و پرسرعت .

جبرانسازی توان راکتیو با ادوات FACTS


جبرانسازی توان راکتیو با ادوات FACTS

جبرانسازی توان راکتیو با ادوات FACTS

45 صفحه در قالب word

 

 

 

فهرست مطالب:

مقدمه

انواع اصلی کنترل کننده‌های FACTS

کنترل کنندهای موازی

کنترل کننده‌های متصل شده به صورت سری

کنترل کننده‌های ترکیبی موازی و سری

کنترل کننده‌های دیگر

لیست منافع محتمل از فن‌آوری FACTS

بخش 2 ـ جبرانسازی با ادواتFACTS

جبران سازی موازی

تنظیم ولتاژ در نقطه میانی برای تقطیع خط

پشتیبانی ولتاژ در انتهای خط برای جلوگیری از ناپایداری ولتاژ

اصلاح پایداری حالت گذرا

خلاصه الزامات جبران ساز

روش‌های تولید توان رآکتیو قابل کنترل

مولدهای استاتیکی توان رآکتیو با امپدانس متغیر

مولدهای توان رآکتیو نوع کنورتور سوئیچ شونده

مولدهای توان رآکتیو مختلط کلید زنی کنورتور با TSC و TCR

جبران سازهای استاتیکی توان رآکتیو SVC و STATCOM

انواع متعارف ادوات FACTS

استفاده از ادوات FACTS در صنعت برق کشور

« نمونه‌ای از کاربرد ادوات FACTS در جهان»

اثبات کارآئی سیستم نصب شده

حداکثر سازی ظرفیت شبکه موجود

منابع

 

خلاصه :

افزایش بار تحمیلی به شبکه‌های انتقال و افزایش مصرف، لزوم تولید بیشتر انرژی الکتریکی را ایجاب می‌کند، ولی بدست آوردن حریم‌های جدید برای خطوط انتقال بسیار مشکل می‌باشد. و این مسائل باعث می‌شودکه شرکت‌های تولید و انتقال کننده برق سعی کنند که از حداکثر ظرفیت خطوط انتقال خود استفاده کنند، فن‌آوری جدید FACTS  این قابلیت را برای شرکت‌ها ایجاد و علاوه بر آن قابلیت اطمینان شبکه‌ها را نیز بالا می‌برد، در این مقاله ابتدا به شناسایی ت ادرات و تجهیزات FACTS پرداخته شده و سپس جبرانسازی توان رآکتیو برای افزایش بهینه ظرفت خطوط انتقال مورد بررسی قرار گرفته‌اند. مولدهای توان راکتیو و مثالهایی از کاربرد ادرات FACTS در جهان و ایران از بخشهای دیگر این مقاله می‌باشند.

 

مقدمه:

در سالهای اخیر، بار تحمیلی به شبکه‌های انتقال افزایش یافته است و این افزایش هم چنان به دلیل ازدیاد تعداد مولدهای منفرد و جدا از شرکت‌های برق و همچنین افزایش رقابت میان خود شرکت‌ها، ادامه خواهد یافت. به این امر باید این مسئله را نیز افزودکه به دست آوردن حریم‌های جدید برای عبور خطوط انتقال نیرو بسیار مشکل شده است. افزایش بار انتقالی، نبود طراحی بلند مدت، و نیاز به دسترسی آزادانه شرکت‌ها و مشترکین به موسسات تولید کننده، همه با هم موجب پدیدار شدن تمایلاتی در جهت ایمنی کمتر و کیفیت پایین‌تر تولید و تأمین نیرو شده ‌اند . فن‌آوری FACTS ، با قادر کردن شرکت‌ها به بهره‌گیری حداکثر از امکانات انتقال خود و با افزایش قابلیت اطمینان شبکه، از عوامل اساسی در برطرف نمودن پاره‌ای از ـ نه تمامی ـ این مشکلات می‌باشد.

هر چند، باید تاکید کرد که در بسیاری از ضرورت‌های افزایش ظرفیت شبکه، احداث خطوط جدید، با افزایش ظرفیت جریان و ولتاژ خطوط موجود در یک کریدور، ضرورت دارد.

فن‌آوری FACTS یک کنترل کننده منفرد و پرتوان نیست، بلکه مجموعه‌ای از کنترل کنندهاست، که هر یک می‌تواند به تنهایی یا با هماهنگی دیگر کنترل کننده‌ها یک یا چند پارامتر ذکر شده را در سیستم کنترل نماید. یک کنترل کننده FACTS که به طرز مناسبی انتخاب شده باشد، می‌تواند محدودیت‌های خاصی یک خط مشخص یا یک کریدور را برطرف نماید. از آن جا که کنترل کننده‌های FACTS کاربردهایی از یک فن‌آوری پایه را عرضه می‌کنند، تولید آن‌ها در نهایت می‌تواند از مزیت فن‌آوریهای مبنا بهره ببرد. همان گونه که ترانزیستور جزء پایه برای طیف وسیعی از تراشه‌های میکروالکترونیکی و مدارات است، تریستور یا ترانزیستور قدرت بالا نیز جزء اصلی برای مجموعه‌ای از کنترل کننده‌های الکترونیکی قدرت بالا است.

برخی از کنترل کننده‌های الکترونیک قدرت، که اینک در زمره مفاهیم FACTS در آمده‌اند مربوط به زمانی هستند که مفهوم FACTS توسط آقای هینگورانی[1]ـ به جامعه صنعتی معرفی شد. شاخص‌ترین آنها جبران کننده استاتیکی توان راکتیو در حالت اتصال موازی (svc) می‌باشد، که برای کنترل ولتاژ اولین بار در نبراسکا به نمایش درآمد و به وسیله کمپانی GE در 1974 و به وسیله کمپانی وستینگهاوس در مینه سوتا در 1975 به صورت تجاری عرضه شد. اولین کنترل کننده سری، NGH-SSR با حالت میراکننده توسط هینگورانی، ساخته شد. این کنترل کننده عبارت از ابزار کنترل امپدانس به صورت خازن سری کم توان بود و در سال 1984 توسط زیمنس در کالیفرنیا به نمایش درآمد. این وسیله نشان داد که با یک کنترل کننده فعال هیچ حدی برای جبران سازی توسط خازن سری وجود ندارد. حتی قبل از SVC ها، دو نوع راکتور قابل اشباع استاتیک برای محدود کردن اضافه ولتا‍ژها جود داشتند و نیز برق گیرهای قدرتمند اکسید فلزی فاقد فاصله هوایی نیز برای محدود کردن اضافه ولتاژهای گذرا به کار می‌رفتند. تحقیقاتی هم بر روی تپ چنجرهای الکترونیکی و جابه‌جا کننده‌های فاز انجام شده است. با همه این‌ها، وی‍ژگی منحصر به فرد فن‌آوری FACTS آن است که مفاهیم این چتر گسترده، موقعیت‌های فراوان بالقوه‌ای را برای فن‌آوری الکترونیک قدرت به وجود آورده، به طوری که ارزش سیستم‌های قدرت افزایش یافته، و با استفاده از آن انبوهی از نظریات پیشرفته و جدید ارائه و به واقعیت تبدیل شده است.

 

انواع اصلی کنترل کننده‌های FACTS

به طور کلی، کنترل کننده‌های FACTS را می‌توان به چهار دسته تقسیم کرد:

کنترل کننده‌های سری

کنترل کننده‌های موازی(شنت)

کنترل‌کننده‌های ترکیبی سری ـ سری

کنترل کننده‌های ترکیبی سری ـ موازی

شکل 1ـ الف نماد عمومی برای یک کنترل کننده FACTS را نشان می‌دهد که به صورت یک پیکان، تریستور در داخل یک جعبه است.

 

کنترل کننده‌های سری: ‍[شکل 1ـ ب] کنترل کننده سری می‌تواند یک امپدانس متغیر باشد، مثل خازن، راکتور، و غیره ...، یا یک منبع متغیر فرکانس اصلی یا زیر سنکرون و فرکانس‌های هارمونیکی مبنی بر الکترونیک قدرت باشد، (یا ترکیبی از آن‌ها) که نیاز مورد نظر را برآورده نماید. در اصل همه کنترل کننده‌های سری ولتاژ را به صورت سری به خط تزریق می‌کنند. حتی یک امپدانس متغیر ضرب در جریان داخل آن، نماینده یک ولتاژ سری است که در خط تزریق شده است. تا زمانی که ولتاژ بر جریان خط عمود است، کنترل کننده سری فقط مقادیری توان راکتیو تأمین یا مصرف می‌کند. هر اختلاف فاز دیگری، جابه‌جایی توان واقعی را نیز درگیر خواهد نمود.

 

کنترل کننده‌های موازی: ‍[شکل 1ـ ج] مثل حالت کنترل کننده های سری، کنترل کننده موازی می‌تواند امپدانس متغیر، منبع متغیر یا ترکیبی از آن‌ها باشد. در اصل همه کنترل کننده‌های موازی در نقطه اتصال خود جریان به سیستم تزریق می‌کنند. حتی یک امپدانس متغیر که به ولتاژ خط متصل شده باشد موجب سیلان جریان متغیری شده و لذا نماینده تزریق جریان به داخل خط است تا زمانی که جریان تزریق شده و ولتاژ خط عمود باشند، کنترل کننده موازی فقط مقادیری توان راکتیو تأمین یا مصرف می‌کند. هر اختلاف فاز دیگری، جابه‌جایی توان واقعی را نیز درگیر خواهد کرد.

 

کنترل کننده ترکیبی سری ـ سری: [شکل 1ـ د] این وسیله می‌تواند ترکیبی از کنترل کننده‌های سری جداگانه باشد که در چند خط انتقال یک سیستم نصب شده و به صورت هماهنگ شده کنترل می‌شوند. یا می‌تواند یک کنترل کننده یکپارچه شده باشد (شکل 4ـ1 د) که در آن، کنترل کننده‌های سری، جبران سازی رآکتیو سری را به طور مستقل برای هر خط انجام می‌دهند، اما توان واقعی را نیز از طریق رابط توان بین خطوط منتقل می‌نمایند. قابلیت انتقال توان در کنترل کننده یکپارچه سری ـ سری که به آن کنترل کننده سیلان توان بین خطی می‌گویند، تعادل سیلان انتقال را به حداکثر می‌رساند. توجه نمایید که اصطلاح « یکپارچه شده» در این جا به این معنی است که ترمینال‌های dc در کنورتورهای همه کنترل کننده‌ها، همه به یکدیگر متصل شده‌اند تا توان واقعی را منتقل نمایند.

 

 

ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است

متن کامل را می توانید در ادامه دانلود نمائید

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است


دانلود با لینک مستقیم

دانلود پایان نامه استفاده از ادوات facts برای بهبود پایداری ولتاژ در شبکه ای با نیروگاه بادی

اختصاصی از یارا فایل دانلود پایان نامه استفاده از ادوات facts برای بهبود پایداری ولتاژ در شبکه ای با نیروگاه بادی دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه استفاده از ادوات facts برای بهبود پایداری ولتاژ در شبکه ای با نیروگاه بادی


دانلود پایان نامه استفاده از ادوات facts برای بهبود پایداری ولتاژ در شبکه ای با نیروگاه بادی

استفاده از ادوات facts برای بهبود پایداری ولتاژ در شبکه ای با نیروگاه بادی

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب* 

فرمت فایل:PDF

تعداد صفحه:164

چکیده :

در این پروژه، با هدف ارتقای ولتاژ از جنبه حد بارپذیری و دینامیک های کوتاه مدت و با تکیه بر مشکلات و راه حل های ارائه شده در مقالات منتشره جدید، ابعاد شناسایی شده این مسئله معرفی شده و مشکلات موجود در یک شبکه نمونه به تصویر کشیده شده است. سپس تلاش شده تا با استفاده از روش های مختلف جبران سازی دینامیکی توان راکتیو، مشکلات موجود کاهش داده شود یا به طور کلی رفع شود. نهایتا یک تکنیک خاص با نگرشی جدید پیشنهاد شده که از نظر هزینه – فایده، بسیار سودمند به نظر می رسد.

مسائل پایداری، پیوستگی عمیقی با موضوعات قابلیت اطمینان، برنامه ریزی، بهینه سازی و حتی کیفیت توان در سیستم قدرت دارند. مسئله پایداری دارای جنبه های مختلفی است که از این میان، ناپایداری ولتاژ به عنوان یک معضل نسبتا جدید، گریبان گیر سیستم های قدرت امروزی است و از آنجا که وجود اغتشاشات، به خاطر خطای انسانی یا عوامل طبیعی، یک واقعیت اجتناب ناپذیر است، بروز ناپایداری ولتاژ ناشی از یک اغتشاش اولیه، باعث خاموشی های متعددی در شبکه های کشورهای مختلف شده است.

وقوع چند خاموشی وسیع در آمریکا و اروپا از جمله این وقایع است. در 14 آگوست 2003 (اواسط مرداد) یک حادثه خروج متوالی تجهیزات انتقال و تولید در سیستم به هم پیوسته شرق آمریکای شمالی منجر به خاموشی بیشتر بخش های ایالت نیویورک و قسمت هایی از پنسیلوانیا، اوهایو، میشیگان و انتاریوی کانادا شد. این خاموشی آمریکایی – کانادایی، تقریبا 50 میلیون نفر را در 8 ایالت آمریکا و 2 استان کانادا تحت تاثیر قرار داد. 63 گیگاوات بار قطع شد که تقریبا 11 درصد کل بار تأمین شده در این سیستم است. حین این اتفاق، 400 خط انتقال و 531 واحد تولیدی در 261 نیروگاه قطع شدند. بررسی های بعدی نشان داد این حادثه از نوع ناپایداری ولتاژ بوده است. ساعاتی قبل از وقوع این حادثه، مشکل تامین توان راکتیو در بعضی مناطق به وجود آمده بود.

نرم افزارهای تخمین حالت و آنالیز بلادرنگ پیشامد، اطلاعات کافی از حوادث در حال وقوع فراهم می کنند و ارزیابی «هشدار زود هنگام» را انجام می دهند. این نرم افزارها قبل از حادثه فوق و در طی آن دچار مشکل بودند.

تولید بادی را می توان به عنوان یکی از منابع تولید پراکنده دانست. تولید پراکنده به تمام واحدهای تولید با حداکثر ظرفیت 50 تا 100 مگاوات گفته می شود که معمولا به شبکه توزیع متصلند و به طور مرکزی برنامه ریزی یا توزیع نمی شوند.

گزارشات اخیر حاکی از این است که تولید بادی در دنیا در سال های اخیر سریع ترین رشد را در بین منابع تولید برق تجربه می کند. سیستم انتقال دانمارک غربی یک مورد واقعی از یک سیستم قدرت بادی بزرگ است.

در ایران نیز با گسترش بازار برق و وجود مناطق بادخیز مناسب و سند چشم انداز 20 ساله توسعه کشور، الحاق مزارع باد بیشتر دور از انتظار نیست و هم اکنون بخش خصوصی برای احداث چند نیروگاه بادی اقدام کرده است. در سال 2008، 17 مگاوات به ظرفیت نصب شده کشورمان اضافه شده و مجموعا به 85 مگاوات در انتهای سال رسیده است.

هدف این پروژه بررسی تاثیر نیروگاه های بادی بر حد بارپذیری و پایداری ولتاژ گذرای یک سیستم قدرت و مرور راهکارهای مختلف موجود برای بهبود مشکلات ناشی از آنها و تاثیر عوامل مختلف مثل پارامترهای کنترل و نوع و محل نصب تجهیزات پشتیبانی توان راکتیو است. هرچند تمرکز اصلی بر روی مسائل مربوط به توربین های سرعت ثابت است، اما از مزایای توربین های نسل جدید که مجهز به ادوات الکترونیک قدرت هستند، نیز استفاده شده است.

ریشه مشکلات ناشی از نیروگاه های بادی را می توان در چند دسته قرار داد. اول متغیر و غیرقابل پیش بینی بودن سرعت باد، دوم ناتوانی نیروگاه های باد در تأمین توان راکتیو و سوم قرار گرفتن مزارع باد در قسمت های ضعیف شبکه و دور از مراکز بار.

در فصل اول، مسئله پایداری ولتاژ به همراه علل و راه حل های آن مطالعه شده و زمینه هایی که اخیرا در مراجع مورد توجه قرار گرفته معرفی شده است.

در فصل دوم، انواع توربین های باد و مشکلات مربوط به آنها از منظر شبکه و از منظر توربین مورد توجه قرار گرفته است و راه حل های موجود معرفی شده در مراجع، ارائه شده است.

فصل سوم، به توصیف ادوات FACTS به عنوان جبران سازهای دینامیک پرداخته و سیستم های ذخیره انرژی را به عنوان زیر شاخه ای از این تجهیزات معرفی کرده است.

در فصل چهارم، با هدف کشف تأثیر کیفیت اتصال به شبکه بر کار یک ژنراتور القایی و برای درک عمیق عملکرد یک ماشین القایی، منحنی های تغییرات کمیات مختلف الکتریکی نسبت به لغزش در شرایط متفاوت رسم شده است.

در فصل پنجم با ارائه نتایج مطالعه استاتیک و شبیه سازی حوزه زمان، انواع روش های موجود برای ارتقای پایداری ولتاژ گذرای یک سیستم ضعیف، با یک مزرعه باد سرعت ثابت موجود، مورد بحث قرار گرفته و یک تکنیک جدید و مقرون به صرفه با تکیه بر استانداردهای بروز شده سیستم های دارای تولید بادی، ارائه شده است.

نهایتا در فصل ششم به کمک نتایج شبیه سازی به نتیجه گیری پرداخته شده است.

و...

NikoFile


دانلود با لینک مستقیم

پایان نامه بررسی انواع تجهیزات خانواده FACTS

اختصاصی از یارا فایل پایان نامه بررسی انواع تجهیزات خانواده FACTS دانلود با لینک مستقیم و پرسرعت .

پایان نامه بررسی انواع تجهیزات خانواده FACTS


پایان نامه بررسی انواع تجهیزات خانواده FACTS

 مطالب این پست : پایان نامه بررسی انواع تجهیزات خانواده FACTS 

  پایان نامه کارشناسی رشته مهندسی برق – قدرت

با فرمت ورد (دانلود متن کامل پایان نامه)

 

 

 

 

فهرست

عنوانصفحهفصل اول : پیشگفتار 1-1 مقدمه11-2 محدودیت های انتقال توان در سیستم های قدرت1-2-1 عبور توان در مسیرهای ناخواسته121-2-2 ضرفیت توان خطوط انتقال31-3 مشخصه باپذیری خطوط انتقال31-3-1 محدودیت حرارتی41-3-2 محدودیت افت ولتاژ51-3-3 محدودیت پایداری61-4 راه حل‌ها1-4-1 کاهش امپدانس خط با نصب خازن سری771-4-2 بهبود پرفیل ولتاژ در وسط خط81-4-3 کنترل توان با تغییر زاویه قدرت81-5 راه حل‌های‌ کلاسیک91-5-1 بانک‌های خازنی سری با کلیدهای مکانیکی91-5-2 بانک‌های خازنی وراکتوری موازی قابل کنترل با کلیدهای مکانیکی91-5-3 جابجاگر فاز9  فصل دوم : آشنایی اجمالی با ادوات FACTS 2-1 مقدمه112-2 انواع اصلی کنترل کننده های FACTS112-2-1 کنترل کننده‌های سری112-2-1-1 جبران ساز سنکرون استاتیکی به صورت سری(SSSC)112-2-1-2 کنترل کننده‌های انتقال توان میان خط(IPFC)122-2-1-3 خازن سری با کنترل تریستوری (TCSC)122-2-1-4 خازن سری قابل کلیدزنی با تریستور (TSSSC)122-2-1-5 خازن سری قابل کلید زنی با تریستور (TSSC)122-2-1-6 راکتور سری قابل کلید زنی با تریستور (TSSR)132-2-1-7 راکتور با کنترل تریستوری (TCSR)132-2-2 کنترل کننده‌های موازی132-2-2-1 جبران کننده سنکرون استاتیکی(STATCOM)132-2-2-2 مولد سنکرون استاتیکی (SSG)132-2-2-3 جبران ساز توان راکتیو استاتیکی(SVC)142-2-2-4 راکتور قابل کنترل با تریستور (TCR)142-2-2-5 راکتور قابل کلیدزنی با تریستور(TSR)142-2-2-6 خازن قابل کلیدزنی با تریستور (TSC)142-2-2-7 مولد یا جذب کننده توان راکتیو (SVG)152-2-2-8 سیستم توان راکتیو استاتیکی (SVS)152-2-2-9 ترمز مقاومتی با کنترل تریستوری (TCBR)152-2-3 کنترل کننده ترکیبی سری – موازی152-2-3-1 کنترل کننده یکپارچه انتقال توان (UPFC)152-2-3-2 محدود کننده ولتاژ با کنترل تریستوری(TCVL)162-2-3-3 تنظیم کننده ولتاژ با کنترل تریتسوری (TCVR)162-2-3-4 جبران‌سازهای استاتیکی توان راکتیو SVC و STATCOM162-3 مقایسه میان SVC و STATCOM172-4 خازن سری کنترل شده با تریستور GTO (GCSC)182-5 خازن سری سوئیچ شده با تریستور (TSSC)182-6 خازن سری کنترل شده با تریستور (TCSC)19فصل سوم : بررسی انواع کاربردی ادوات FACTS 3-1 مقدمه203-2 منبع ولتاژ سنکرون بر پایه سوئیچینگ مبدل203-3 کنترل کننده توان عبوری بین خطی (IPFC)233-4 جبرانگر سنکرون استاتیکی سری (SSSC)283-5 جبرانگر سنکرون استاتیکی (STATCOM)313-6 آشنایی با UPFC353-6-1 تاثیر UPFC بر منحنی بارپذیری363-6-2 معرفی UPFC363-7 آشنایی با SMES383-7-1 نحوه کار سیستم SMES383-7-2 مقایسه SMES با دیگر ذخیره کننده های انرژی403-8 آشنایی با UPQC403-8-1 ساختار و وظایف UPQC413-9 آشنایی با HVDCLIGHT423-9-1 مزایای سیستم HVDCLIGHT433-9-2 کاربرد سیستم HVDCLIGHT443-9-3 عیب سیستم HVDCLIGHT463-9-4 بررسی اضافه ولتاژهای داخلی در خطوط انتقال قدرت HVDC463-10 مقایسه SCC و TCR از دیدگاه هارمونیک های تزریقی به شبکه توزیع473-11 SVC493-12 مبدل های منبع ولتاژ VSC51فصل چهارم : نتیجه گیری55منابع58

 

فصل اول

پیشگفتار

1-1 مقدمه

این نوشتار عهده دار معرفی ادوات جدید سیستم های مدرن انتقال انرژی می‌باشد که تحول زیادی را در بهره‌برداری و کنترل سیستمهای قدرت ایجاد خواهد کرد.

با رشد روز افزون مصرف،سیستمهای انتقال انرژی با بحران محدودیت انتقال توان مواجه هستند.این محدودیتها عملاً بخاطر حفظ پایداری و تامین سطح مجاز ولتاژ بوجود می‌آیند.بنابراین ظرفیت بهره‌برداری عملی خطوط انتقال بسیار کمتر از ظرفیت واقعی خطوط که همان حد حرارتی آنهاست ، می‌باشد.این امر موجب عدم بهره برداری بهینه از سیستم‌های انتقال انرژی خواهد شد.یکی از راههای افزایش ظرفیت انتقال توان‌،‌احداث خطوط جدید است که این امر هم چندان ساده نیست ومشکلات فراوانی را به همراه دارد.

با پیشرفت صنعت نیمه هادیها و استفاده آنها در سیستم قدرت،مفهوم سیستم های انتقال انرژی انعطاف‌پذیر(FACTS) مطرح شد که بدون احداث خطوط جدید بتوان از ظرفیت واقعی سیستم انتقال استفاده کرد.

پیشرفت اخیر صنعت الکترونیک در طراحی کلیدهای نیمه هادی با قابلیت خاموش شدن و استفاده از آن در مبدل های منبع ولتاژ در سطح توان و ولتاژ سیستم قدرت علاوه بر معرفی ادوات جدیدتر،تحولی در مفهوم FACTS بوجود آورد و سیستمهای انتقال انرژی را بسیار کارآمدتر و موثرتر خواهد کرد .

برای درک بهتر و شناساندن مشخصات برجسته این ادوات درقدم اول لازم است مشکلات موجود سیستم های انتقال انرژی شناسائی شوند.آنگاه راه حل های کلاسیک برای رفع آنها بیان می شوند.مبدل‌های منبع ولتاژ،که ساختار کلیه ادوات جدید FACTS بر آن استوار است در بخش بعدی مورد بحث قرار
می گردد و در خاتمه نسل جدید ادوات FACTS معرفی می شوند .

1-2 محدودیتهای انتقال توان در سیستمهای قدرت

یک سیستم قدرت از سه قسمت عمده تولید،انتقال و مصرف تشکیل شده است. هدف یک مهندس بهره‌بردار قدرت این است که توان خواسته شده مصرف‌کننده را تحت ولتاژ ثابت و فرکانس معین تامین نماید.از لحاظ کنترل روی مصرف کننده نمی توان محدودیت زیادی اعمال کرد زیرا او خریدار است و خواسته هایش باید تامین شود.

در نتیجه ، کنترل اصلی در شبکه برق روی بخش تولید و انتقال است.حالت مطلوب در سیستم تولید و انتقال این است که این سیستم بایستی قابلیت تولید و انتقال توان خواسته شده را دارا باشد.معمولاً در طراحی اولیه،این خواسته در نظر گرفته می شود.ولی با گذشت زمان تغییراتی از قبیل رشد مصرف،اتصال شبکه‌های دیگر به شبکه قبلی و تاسیس نیروگاهها و خطوط انتقال جدید و … این تعادل را بر هم زده و محدودیت هایی را در بهره ‌برداری از شبکه قدرت بوجود می آورند.

گسترش سیستم های قدرت و به هم پیوستن آنها در دو ناحیه متمایز صورت گرفت. ناحیه ای با درصد جمعیت زیاد و وجود نیروگاه های نزدیک به مصرف که توسعه سیستم قدرت را تبدیل به یک شبکه به هم‌پیوسته غربالی تبدیل کرده است ، مثل شبکه های قدرت در اروپا و شرق ایالات متحده آمریکا و ناحیه‌ای که مقدار توان عظیمی را از نیروگاههای آبی به مراکز مصرف در فواصل دور تحویل می دهد.از قبیل سیستمهای موجود در کانادا و برزیل .

الحاق شبکه‌ها به هم علاوه بر مزیت فراوانی که در برداشت،مشکلات عدیده‌ای را هم به همراه آورد. مشکلی که در انتقال توان سیستم‌های به هم پیوسته غربالی وجود دارد، عبور توان در مسیرهای ناخواسته است که به عنوان مشکل توان در حلقه[1] شناخته می شود.عبور این توان در مسیرهای ناخواسته موجب افزایش بار غیر مجاز و عدم بهره‌برداری بهینه از سیستم خواهد شد.لذا بایستی به طریقی توان عبوری از یک مسیر را کنترل نموده و از طرفی برای سیستم های انتقال انرژی طولانی مسئله توان در حلقه مشکل ساز نیست بلکه مشکل عمده در این سیستم ها ، مسئله پایداری گذرا و افت ولتاژ غیر مجاز است.به این معنی که برای حفظ پایداری شبکه و تثبیت سطح ولتاژ مجاز،توان عبوری در سیستم انتقال باید محدود شود.بر این اساس،حالت ایده‌آل یک سیستم انتقال انرژی موقعی است که :

  1. کنترل توان در مسیرهای خواسته شده انجام پذیرد.
  2. ظرفیت بهره برداری کلیه خطوط در حد ظرفیت حرارتی قرار داشته باشد.

در نتیجه مشکلات عمده در بهره‌برداری از سیستم‌های انتقال انرژی عبارتند از عبور توان در مسیرهای ناخواسته و عدم بهره‌برداری از ظرفیت سیستم‌های انتقال در حد ظرفیت حرارتی.

[1] – Loop Flow Problem


دانلود با لینک مستقیم