گسترش تابع زمان - تاخیر در تقاطع های چراغ دار زیر اشباع
extension time-delay function for unsaturation signalized intersections
ویژگیهای تحلیلی نگاشت
عددهای موهومی پرواز شگفت انگیز روح خدایند.این اعداد هویت دو گانه ای بین بودن ونبودن دارند.
گاترفید ویلهلم فون لایب نیتس۱۷۰۲میلادی
نظریه ی تابع ها از یک متغییر مختلط شامل برخی از قوی ترین و مفید ترین وپر کاربرد ترین ابزارهای تحلیل ریاضی است.برای انکه دست کم تا هدودی اهمییت متغیر های مختلف را نمایش دهیم چند مبهث از کاربرد های انها را به اختصار بر می شمریم .
۱.در مورد بسیاری از زوج تابع هایu v ,همuوهم vدر معادله ی لاپلاس در دو بعد واقعی صدق میکنند .
برای مثال یا vیاu را میتوان برای توصیف پتانسیل الکتروستاتیکی دو بعدی به کار برد . آن گاه میتوان از تابع دیگری برای توصیف میدان الکتریکی Eبهره گرفت که یک دسته از منحنی های عمود بر منحنی های مربوط به تابع اولیه را ارائه می کند یک موقعیت مشابه برای هیدرودینامیک از یک شاره ایده ال با حرکت غیر چرخشی نیز وجود دارد تابع uباید پتانسیل سرعت را توصیف کند در حالی که تابع vتابع جریان خواهد بود.
درمواردبسیاریکه تابع های u,vمجهولند می توانیم به یاری نگاشت یا تبدیل در صفحه ی مختلط دستگاه مختصات مناسب با مسئله ی مورد نظر بسازیم .
٢.اعداد مختلط(در بخش ۱-۶) از زوج های اعداد حقیقی ساخته می شوند بنابر این حوزه ی اعداد حقیقی به طور طبیعی در حوزه ی اعداد مختلط جا سازی میشوند. در اصطلاح های ریاضی حوزه ی اعداد مختلط تعمیمی از حوزه ی اعداد حقیقی است و بعداً در جهت هر چند جمله ای به ترتیب n (در حالت کلی )صفر مختلط کامل میشود . این واقعیت ابتدا به وسیله ی گاوس اثبات شد و قضیه اصلی جبر نامیده شد (بخش ۶-۴و۷-٢ را ببینید ) به صورت یک نتیجه تابع های حقیقی سری حقیقی بی نهایت و انتگرال ها معمولا میتوانند به طور طبیعی به اعداد مختلط ساده به وسیله ی نشاندن یک متغیر حقیقی x برای مثال به جای مختلط z تعمیم داده شوند .
در فصل ۸خواهیم دید که معادله های دیفرانسیل مر تبه ی دومی که در فیزیک مطرح می شوند می توان به کمک سری توانی حل کرد.
اگر به جای x متغیر مختلط z را قرار دهیم همین سری توانی را میتوان در صفحه ی مختلط نیز به کار برد. وابستگی جوابدر نقطه ی معلوم 0 z ،به رفتار در هر جای دیگر ،نگرش گسترده تری درباره ی جواب به ما می دهدو ابزاری قوی(ادامه تحلیلی) برای گستردن ناحیه ای به شمار می آید که در آن جواب صادق است.
٣. با تغییر پارامتر kازحقیقی به موهومی، ik → k معادله هلمهو لتر به معادله ی پخش
تبدیل می شود.همین تغییر جوابهای معادله ی هلمهولتر(تا بع های بسل و بسل کروی )
را به جواب ها ی معادله ی پخش (تابع های تعدیل یافته ی بسل و تعدیل یافته ی بسل کروی )تبدیل می کند .
۴.کاربرد انتگرالهادر صفحه مختلط در موارد زیر متنوع و مفید است.
( الف) محاسبه ی انتگرا لهای معین (در بخش٧-۲)
(ب)وارون کردن سریهای توانی
(ج) تشکیل حاصلضربهای نامتناهی. ازتوابع تحلیلی(در بخش٧-٢)
(د)دستیابی به جواب های معادله های دیفرانیسل به ازای مقادیربز رگ متغیر
(جواب های مجانبی)
(ه) بررسی پایداری دستگاه های بالقوه نو سانی.
(و)وارون کردن تبدیل های انتگرالی .(درفصل ١۵)
در پایان باید بدانیم که درهنگام تعمیم یک نظریه یساده ی فیزیکی ،بسیاری ازکمیتهای فیزیکی که در اصل حقیقی بودند، به مختلط تبدیل میشوند . ضریب شکست نور که کمیتی حقیقی است . با در نظر گرفتن جذب ، به کمیت مختلطی تبدیل میشود . انرﮊی مربوط به یک تراز انرﮊی هسته ای که حقیقتی است، با در نظر گرفتن طول عمر محدود تراز انرﮊی ، به صورت مختلط در میآید،.E=m±iΓ
مدارهای الکتریکی با مقاومت Rو ظرفیت خازن Cو خود القاییL به ا مپدا نس(مقاومت مختلط) تبدیل می شود ( Cω/1-i (ω L+R=z.
ابتدا حساب مختلط را در بخش( ١-۶ )و سپس تابع های مختلط و مشتق انها را در بخش(٢-۶) معرفی می کنیم .در ادامه بافرمول انتگرال بنیادی کوشی دربخش (٣-۶ )وادامه ی تحلیلی ،تکینه و بسط های لورن و تیلور تا بع ها دربخش (۵-۶ )ونگاشت همدیس و نقطه ی فرعی تکینه ها و توابع چند ظرفییتی در بخش( ۶-۶)و (٧-۶ )آشنا خواهیم شد .
۶.۱ جبر مختلط
به تجربه می دانیم که با حل کردن معادله های درجه دوم برای به دست آوردن صفر های حقیقی آ نها اغلب موفق نمی شویم حاصل جواب را به دست بیاوریم مثال زیر به این نکته اشاره دارد :
مثال ١-١-۶ شکل درجه دوم مثبت
برای همه ی مقادیر حقیقیی xمثبت و معین است .
معادله ی بالا در حوزه اعداد حقیقیی y(x)=0جواب ندارد. البته اگر ما از علا مت استفاده کنیم میتوانیم جواب های y(x)=0رابه صورت بنویسیم در زیر درستی آن را بررسی می کنیم:
اگر چه می توانیم مجاسبا تی باi با توجه به قانون انجام دهیم اما این علا مت به ما نمی گوید که اعداد موهومی واقعی هستند.
برای تمایان ساختن صفر های مختلط باید اعداد حقیقی روی خط را در یک صفحه ی اعداد مختلط بزر گ کنیم . یک اعدد مختلط را به صورت یک نقطه با دومختصات در صفحه اقلیدسی به صورت زوج مرتب از دو عدد حقیقیی(a,b)به صورتی که در (شکل۶-۱ )نشان داده شده است معین کنیم . شبیه آن،یک متغیرمختلط یک زوج مرتب ازدومتغیر حقیقی است،
(6.1)
تریب قرار گرفتن متغیر ها مهم است . xقسمت حقیقی z , y قسمت موهومی zنامیده میشود . در حالت کلی ، ( a,b) با (b,a) مساوی نیست و همچنین (,y x) با ((y,xمساوی نیست .به طور معلوم نوشتن یک عدد حقیقی ( ( x ,o را به سادگی بصورتxادامه می دهیم و (o,l) = iرا واحد موهومی می شویم محور xمحورحقیقی است و محور yمحور موهومی صفحه عدد مختلط است. توجه کنید که درمهندسی الکتیریکی قرار دارد است وiازپیش برا ی نشان دادن شدت جریان الکتیریکی حفظ شده است. عدد های مختلط باتوجه به مثال۶-۱-۱ نقطه های هستند .
مهندسین اغلب برای رسیدن به سطح بالایی از روند تولیدات و یا کیفیت
Six sigma ، به بهینه سازی و ارزیابی فرآیندهایی میپردازند که دارای ویژگی های کیفی متعددی هستند. توابع فعلی کیفیت در عین اینکه میتوانند در تحقق بخشیدن به اهداف چند گانه موثر واقع شوند دارای نقاط ضعفی نیز هستند. یکی از این نقاط ضعف و محدودیت ها این است که توابع فعلی نمیتوانند توضیح روشنی برای اثر مشترک میانگین و پراکندگی کیفیت داشته باشند. به همین دلیل مهندسین که هنگام تولید محصولات، از این توابع استفاده میکنند یا نمیتوانند به محصولات مورد نظر خود برسند و یا در صورت تولید این محصولات، آنها را با صرف هزینههای اضافی بدست میآورند. در این مقاله تابع مطلوبیتی مطرح شده است که فاقد این نقاط ضعف است. این تابع پیشنهادی قادر است با توجه به فرضیاتی که در مبحث Six sigma مطرح است « محصول موثر » [1] را تخمین بزند.
همچنین بهتر از توابع دیگر میتواند میزان تغییرات را توجیه کند. برای آنکه متوجه شوید این تابع پیشنهادی تا چه اندازه میتواند به شما در رسیدن به سطح بالاتری از کیفیت کمک کند و در ارزیابی دقتی قابلیتهای فرآیند یاریتان نماید مثالی دربارة جوشکاری قوسی برای شما ارائه دادهایم.
توجه: yield به معنی بازده نیز هست اما در این متن در همه جا این کلمه به صورت
«محصول» ترجمه شده است.
ما معتقدیم هنگامیکه دادههای مربوط به پراکندگی در دسترس شما قرار دارد بهتر است از این تابع مطلوبیت برای تسهیل بخشیدن به بهینهسازی چند معیاری استفاده کنید.
پایان نامه کارشناسی ارشد اقتصاد
گرایش محیط زیست
128 صفحه
چکیده:
محیط شهر به عنوان سکونتگاه شهروندان تاثیر بسیاری در کیفیت زندگی آنان دارد. کیفیت زندگی شهری را میتوان در عوامل مختلفی جستجو کرد. از جمله عواملی که باعث ایجاد آرامش درکاربریهای مختلف برای شهروندان میشود پاکی هوا و وجود مطلوبیتهای زیست محیطی شهری است. مسایل زیست محیطی امروزه و با توجه به افزایش بیرویه آلودگی هوا اهمیت خاصی پیدا کرده است. کلان شهر تهران که یکی از پرجمعیت ترین شهرهای دنیا به حساب میآید نیز با این مساله روبرو است. درحال حاضرآلودگی هوا به عنوان یکی از مهمترین متغیرهای زیست محیطی، یکی ازمسایل و مشکلات شهر تهران به حساب میآید. یکی از راههای کاهش آلودگی هوا در شهر، افزایش فضای سبز درون شهری و نیزآگاهکردن مردم از باارزش بودن محیطزیست[1] میباشد. به هر حال متغیرها و عواملی که قیمت آنها در بازار تعیین می شوند و مردم برای استفاده و یا عدم استفاده از آنها مستقیما هزینه می پردازند، ملموستر خواهند بود. متغیرهای زیست محیطی وهوا از جمله کالاهای عمومی به حساب میآیند که در بازار مبادله نمیشوند و مردم برای استفاده از آنها هزینهای پرداخت نمیکنند، بنابراین از ارزش واقعی آن اطلاعی دردست نیست.
از آنجا که منابع زیستمحیطی از جمله هوای تمیز در بازار مبادله نمیشوند و بازار نمیتواند ارزش واقعی آنها را کشف کند، برای ارزشگذاری آنها از روشهای غیرمستقیم استفاده میشود. برای مثال درست است که مردم ساکن یک شهر بطور مستقیم برای هوای تمیز و یا مطلوبیتهای زیست محیطی پولی پرداخت نمیکنند اما عموما زندگی در ناحیهای از شهر که دارای هوای تمیزتر و یا مطلوبیتهای زیست محیطی بیشتری است، را ترجیح میدهند. این ترجیح در نهایت باعث افزایش تقاضای مسکن در آن ناحیه شده و قیمت مسکن را افزایش میدهد. براین اساس میتوان قضاوت کرد که مردم با پرداخت هزینه بیشتر برای مسکن، در عمل به طور غیرمستقیم برای استفاده و بهره مندی از هوای تمیزتر هزینه میکنند. بر همین اساس یکی از راههای رسیدن به ارزش هوای تمیزتر یا مطلوبیتهای زیستمحیطی[2] بیشتر میتواند بررسی قیمت واحدهای مسکونی و نیز عوامل موثر بر آن باشد. برای رسیدن به هدف فوقالذکر قدم اول آن است که نحوه و میزان تاثیرگذاری آلودگی هوا را برای قیمت مسکن کشف و بررسی نمود.هدفی که در این پایان نامه دنبال می شود.
در این پایان نامه با استفاده از روش قیمتگذاری هدانیک[3] برآوردی از ارزش محیطزیست شهری تهران (با توجه به متغیرهای در نظر گرفته شده در پایان نامه) ارائه میگردد. برای این منظور میل نهایی به پرداخت[4] خانواده های ساکن تهران برای هرکدام از ویژگیهای مسکن از جمله ویژگیهای زیستمحیطی مثل آلودگی هوا برآورد گردیده است.