یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

تحقیق درباره چیلر 45 ص

اختصاصی از یارا فایل تحقیق درباره چیلر 45 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 47

 

فصل اول- آشنایی با چیلرهای جذبی

تقسیم بندی چیلرها

چیلرها از جمله تجهیزات بسیار مهم در سرمایش هستند که به طور کلی می توان آنها را به دو دسته چیلرهای تراکمی و چیلرهای جذبی تقسیم کرد. به طور کلی چیلرهای تراکمی از انرژی الکتریکی و چیلرهای جذبی از انرژی حرارتی به عنوان منبع اصلی برای ایجاد سرمایش استفاده می کنند.

فناوری تبرید جذبی روشی عالی برای تهویه مطبوع مرکزی در تأسیساتی است که ظرفیت دیگ اضافی داشته و می توانند بخار یا آب داغ مورد نیاز برای راه اندازی چیلر را تأمین نمایند. چیلر های جذبی ظرفیت بین 25 تا 1200 تن برودتی را براحتی تأمین می کنند. البته قابل ذکر است که برخی از تولید کنندگان ژاپنی موفق شده اند چیلرهای جذبی با ظرفیت معادل5000 تن نیز تولید کنند. در سیستمهای جذبی غالباً از آب به عنوان مبرد استفاده می شود. گرمای مورد نیاز برای کارکرد این چیلرها به طور مستقیم از گاز طبیعی یا گازوئیل تأمین می گردد. منابع غیر مستقیم گرما در چیلرهای جذبی عبارتند از آب داغ بخار پر فشار و کم فشار. بر این اساس تولید کنندگان مختلف در جهان سه نوع اصلی چیلر جذبی ارائه می نمایند که عبارتند از : شعله مستقیم ، بخار و آب داغ.

در یک تقسیم بندی عمومی می توان چیلرهای جذبی را در دو دسته چیلرهای جذبی آب و آمونیاک و چیلرهای جذبی لیتیوم بروماید و آب طبقه بندی نمود . در واقع در هر سیکل تبرید جذبی یک سیال جاذب و یک سیال مبرد وجود دارد که تقسیم بندی فوق بر این مبنا انجام شده است. در سیستم آب و آمونیاک ، سیال مبرد آمونیاک وسیال جاذب آب است. در سیستم لیتیوم بروماید و آب ، سیال مبرد آب و سیال جاذب ، محلول لیتیوم بروماید است.

علاوه بر زوج مبرد و جاذب های ذکر شده ، در بعضی سیکل های تبرید جذبی از زوجهای دیگری نیز استفاده می گردد که در جدول (1) آمده است.

 اما بر حسب اجزای سیستم هم می توان تقسیم بندی های دیگری ارائه کرد مثلاً می توان سیکل های تبرید جذبی را به سیکل های تبرید یک اثره ، دو اثره و سه اثره طبقه بندی کرد. امروزه سیکل های تبرید جذبی تک اثره و دو اثره در مقیاس بسیار وسیع و در اشکال متنوع ساخته می شوند و سیکل های سه اثره همچنان در دست مطالعه می باشند.

جدول (1) : زوج های مبرد و جاذب

جاذب

مبرد

نوع جاذب

LiBr 

H2O

هالید قلیایی (نمک)

LiClO3

H2O

هالید قلیایی (نمک)

CaCl2 

H2O

هالید قلیایی (نمک)

ZnCl2

H2O

هالید قلیایی (نمک)

ZnBr

H2O

هالید قلیایی (نمک)

H2SO4

H2O

اسید

H3PO4

H2O

اسید

هیدروکسیدهای قلیایی

H2O

باز

H2O

NH3

_

تیوسیانات های قلیایی

NH3

_

 اصطلاحات فنی رایج در چیلر جذبی

ژنراتور

ژنراتور معمولاً در محفظه بالایی چیلرهای جذبی قرار داشته و وظیفه تغلیظ محلول لیتیوم بروماید رقیق و جدا سازی آب مبرد را بر عهده دارد.

 جذب کننده

جذب کننده معمولاً در پوسته پایینی چیلرهای جذبی قرار داشته و وظیفه جذب بخار مبرد تولید شده در محفظه اواپراتور را بر عهده دارد.

 اواپراتور

اواپراتور معمولاً در پوسته پایین چیلرهای جذبی قرار می گیرد. مایع مبرد در اواپراتور به لحاظ فشار پایین محفظه (خلأ نسبی) تبخیر شده و باعث کاهش درجه حرارت آب سرد تهویه درون لوله های اواپراتور می گردد.

کندانسور

کندانسور معمولاً در پوسته های بالایی چیلرهای جذبی واقع شده است و وظیفه تقطیر مبرد تبخیر شده توسط ژنراتور را بر عهده دارد. بخار مبرد در برخورد با لوله های حاصل از آب برج ، تقطیر شده و به تشتک اواپراتور سرریز می شود.

 محلول جاذب

این محلول در سیکل های پروژه حاضر محلول لیتیوم بروماید و آب است.

 مایع مبرد


دانلود با لینک مستقیم


تحقیق درباره چیلر 45 ص

دانلود تحقیق ساخت و بهره برداری از یک سیستم سرمایش جذبی

اختصاصی از یارا فایل دانلود تحقیق ساخت و بهره برداری از یک سیستم سرمایش جذبی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق ساخت و بهره برداری از یک سیستم سرمایش جذبی


دانلود تحقیق ساخت و بهره برداری از یک سیستم سرمایش جذبی

ماشین جذبی و کاربردهای آن:

در سال 1777 یعنی بیش از 200 سال پیش یک فرانسوی به نام «نایرن» (Nairne)تئوری تبرید جذبی را ارائه کرد. در سال 1860 اولین چیلر جذبی که با آمونیاک و آب کار می کرد ساخته شد. در سال 1945 اولین چیلر جذبی به وسیله کمپانی «کریر» به فروش رسید. چیلر جذبی سرگذشتی طولانی دارد، اما در دنیا چندان نام آور نیست. شاید درک این مطلب که ماشینی بتواند با استفاده از بخار آب یا سوختن سوخت آب سرد تولید کند کمی مشکل باشد! [1] اما هم اکنون در دنیا به دلیل استفاده از منابع جدید انرژی (گاز، نور خورشید و …) استفاده ناچیز انرژی برق و عدم استفاده از مبردهای مخرب لایه ازن به این ماشین توجه خاصی شده است.
1-1-1- مفاهیم و اصول (1)
تئوری ماشین جذبی از مفهوم «افزایش نقطه جوش»
 (Boiling point increase)گرفته شده است. زمانی که یک مول از محلولی با یک لیتر آب مخلوط شود نقطه جوش در حدود    افزایش می یابد. آب خالص در شرایط استاندارد در   می جوشد، اما وقتی که چند مول از محلولی به آب افزوده شود نقطه جوش آن چند درجه زیاد خواهد شد. این مطلب که در دبیرستان آموزش داده شده برای چیلر جذبی مورد استفاده قرار گرفته است.
 تولید آب سردشده: زمانی که یک خشک کننده (desiccant) در محفظه خالی از هوا وجود دارد، بخار آب موجود در محفظه به وسیله آن جذب خواهد شد. فشار این محفظه ممکن است تقریبا در حد خلاء با دمایی حدود   باشد چرا که مقدار بخار آب بسیار کم است. (شکل 1-1)


شکل(1-1)
 اگر این محفظه به محفظه دیگری که حاوی آب خالص است و از راه یک شیر متصل شود، فشار محفظه جدید باید در حدود 0.1 بار مطلق (Absolute bar) و دمای آن در حدود   باشد. میان آب خالص و مایع خشک کننده اختلاف فشار بخار بسیار زیادی وجود دارد. زمانی که شیر باز شود بخار آب موجود در آب که محفظه خود را پرکرده است، باید به محفظه خشک کننده برود. در این زمان این مقدار زیاد بخار آب، فرایند کاهش فشار زیادی را با حرکت به محفظه خشک کننده می گذارند و مقداری از آب هم بخار خواهد شد و خود را خنک خواهد کرد.  (شکل 2-1)


شکل(2-1)
اگر لوله های آب سرد در محفظه آب خالص نصب شوند، آب در لوله ها سرد یا خنک می شود و این آب خنک می تواند برای تهویه مطبوع با فرایند سرد کردن مورد استفاده قرار گیرد.
تغلیظ دوباره: (Reconcentration) هنگامی که بخار آب اضافی که توسط مایع خشک کننده جذب می شود فرایند جذب شدن را آهسته کرده یا متوقف می سازد, فرایند سرد کردن هم پایان می پذیرد. سپس مایع خشک کننده اشباع با گرمایش توسط بخار یا سوختن گاز دوباره تغلیظ می شود. (شکل 3-1)



شکل (3-1)
بنابراین مبرد جذب شده به وسیله چنین حرارتی بخار می شود، در حالی که مایع خشک کننده دوباره غلیظ خواهد شد. بخار آب در محفظه خشک کن به وسیله آب خنک کن، سرد می شود و دوباره به صورت مایع در می آید. (شکل 4-1)
شکل (4-1)
به هر حال خشک کننده به صورت جامد به آسانی به محفظه دیگر منتقل نمی‌شود و به این علت از یک خشک کننده یا جاذب (Absorbent) مایع برای چیلرهای جذبی واقعی استفاده می شود.

 

 

فهرست مطالب

فصل اول- آشنایی
1-1- ماشین جذبی و کاربردهای آن    2
2-1-1- مفاهیم و اصول    2
3-1-1- فرایندهای ترمودینامیکی در سیکل جذبی    6
4-1-1- فشارهای بالا و پایین ماشین    10
5-1-1- یک قرارداد     10
6-1-1- کاربردها: ماشین جذبی در مقیاس تجارتی    10
2-1- انواع ماشینهای جذبی و تفاوت های آنها    13
1-2-1- جفت مبرد- جاذب    13
2-2-1- روش های مختلف گرمایش    16
3-2-1- طبقه های ژنراتور    18
4-2-1- ماشین جذبی برای گرمایش و سرمایش     19
3-1- اهداف این تحقیق    21
1-3-1- ماشین جذبی درمقایسه با ماشین تراکمی    21
2-3-1- محلول آب- برومید لیتیم در مقایسه با امونیاک – آب    22
3-3-1- سیستم هوا خنک در مقایسه با آب خنک    23
4-3-1- استفاده مستقیم از گاز شهری در مقایسه با منابع دیگر نظیر بخار داغ و انرژی خورشیدی    24
5-3-1- ظرفیت دستگاه    25
4-1 -مراجع    26
فصل دوم- ترمودینامیک سیکل
1-2- روش های مختلف خنک کن    28
1-1-2- خنک کردن با آب    28
2-1-2- خنک کردن با هوا    28
3-1-2- خنک کردن تبخیری    29
2-2- طرح مناسب بهمراه مدل فیزیکی و دیاگرام جریان    30
3-2- پیش فرض ها و داده های ورودی    36
4-2- خواص ترمودینامیکی و ترموفیزیکی نقاط    41
5-2- ضریب عملکرد    45
1-5-2- تعریف کلی     45
2-5-2- ضریب عملکرد ماشین جذبی     47
3-5-2- ضریب عملکرد اصلاح شده    50
6-2- مراجع    54
فصل سوم- بررسی اواپراتور
1-3- مقدمه    56
2-3- اواپراتور پاششی    57
3-3- روشی برای تخمین طول لوله در اواپراتور    58
1-3-3- انتقال حرارت    58
2-3-3- ضریب انتقال حرارت سمت مایع سرد شده    59
3-3-3- ضریب انتقال حرارت سمت مبرد    60
4-3- تبخیر لایه ای    61
5-3- روش بررسی اواپراتور    61
6-3- روش محاسبات    62
1-6-3- آب خنک شونده     62
2-6-3- محاسبات داخل لوله    63
3-6-3- محاسبات برای دیواره لوله    65
4-6-3- محاسبات خارج لوله    66
5-6-3- انتقال حرارت در اواپراتور    67
6-6-3- ضریب انتقال حرارت کلی    68
7-6-3- حل نهایی و محاسبه طول لوله    69
7-3- مراجع    69
فصل چهارم – بررسی کندانسور
1-4- مقدمه    71
2-4- توضیح    72
3-4- انتقال حرارت    72
4-4- محدوده های تغییرات در شرایط محاسبه     73
5-4- بیان پارامترها    76
6-4- ناحیه خنک شدن فاز بخار     76
7-4- محاسبه ضریب انتقال حرارت سطح لوله با هوا    77
8-4- تعاریف و معادلات برای ضریب انتقال حرارت کلی    79
9-4- تقطیر لایه ای داخل لوله    80
10-4- افت فشار    82
11-4- چگونگی محاسبات    83
12-4- مراجع    84
فصل پنجم- بررسی محفظه جاذب
1-5- مقدمه    86
2-5- کریستالیزاسیون    86
3-5- مقایسه سه نوع جاذب از نظر کارکرد آنها در سیکل هوا- خنک جذبی    88
1-3-5- توضیحات ضروری    88
2-3-5- محاسبات مشابه برای هر سه سیکل    89
3-3-5- مدل EISA    91
4-3-5- محاسبات مدل EISA    94
5-3-5- مدل KUROSAWA    95
6-3-5- مدل تلفیقی    99
4-5- طراحی جذب    103
5-5- مراجع    104
فصل ششم- ژنراتور106
1-6- مقدمه    106
2-6- مدل فیزیکی     107
3-6- ضریب انتقال حرارت سمت آب- برومیلیتیم    108
4-6- آنالیز احتراق سوخت    110
5-6- محاسبات احتراق سوخت    112
6-6- انتقال حرارت در سمت گاز    113
1-6-6- انتقال حرارت جابجایی     114
2-6-6- انتقال حرارت تابش    116
3-6-6- محاسبه سطح لوله    120
7-6- مدلهای عملی    120
8-6- مراجع    125
نتیجه گیری کلی    126

 

 

شامل 145 صفحه wrord


دانلود با لینک مستقیم


دانلود تحقیق ساخت و بهره برداری از یک سیستم سرمایش جذبی

پاورپوینت آموزش چیلر جذبی تک اثره

اختصاصی از یارا فایل پاورپوینت آموزش چیلر جذبی تک اثره دانلود با لینک مستقیم و پر سرعت .

پاورپوینت آموزش چیلر جذبی تک اثره


پاورپوینت آموزش چیلر جذبی تک اثره

این فایل در رابطه با مطالعه آموزش چیلر جذبی تک اثره می باشد که در 47 اسلاید تهیه شده است.

 

 

 

 

 

فهرست
اموزش چیلر جذبی تک اثره
تاریخچه چیلرهای جذبی
مفاهیم اولیه
دما
سرما
فشار
حالات ماده
لیتیم بروماید
سه عامل اصلی کریستال
سیستم پرچ
روش اندازه گیریگز های غیر قابل کنداس
نگهداری چیلر جذبی
روش خاموش کردن دستگاه
اپراتور چیلر جذبی
روش رسوب زدایی چیلر جذبی
دلایل کریستال چیلر جذبی
روش رفع کریستال چیلر جذبی
روش رفع چیلر جذبی

 

تصویر محیط برنامه


دانلود با لینک مستقیم


پاورپوینت آموزش چیلر جذبی تک اثره

تحقیق ساخت و بهره برداری ازیک سیستم سرمایش جذبی

اختصاصی از یارا فایل تحقیق ساخت و بهره برداری ازیک سیستم سرمایش جذبی دانلود با لینک مستقیم و پرسرعت .

تحقیق ساخت و بهره برداری ازیک سیستم سرمایش جذبی


تحقیق ساخت و بهره برداری ازیک  سیستم سرمایش جذبی

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:130

فهرست مطالب:
عنوان                                                                     صفحه

فصل اول- آشنایی
1-1- ماشین جذبی و کاربردهای آن    2
2-1-1- مفاهیم و اصول    2
3-1-1- فرایندهای ترمودینامیکی در سیکل جذبی    6
4-1-1- فشارهای بالا و پایین ماشین    10
5-1-1- یک قرارداد     10
6-1-1- کاربردها: ماشین جذبی در مقیاس تجارتی    10
2-1- انواع ماشینهای جذبی و تفاوت های آنها    13
1-2-1- جفت مبرد- جاذب    13
2-2-1- روش های مختلف گرمایش    16
3-2-1- طبقه های ژنراتور    18
4-2-1- ماشین جذبی برای گرمایش و سرمایش     19
3-1- اهداف این تحقیق    21
1-3-1- ماشین جذبی درمقایسه با ماشین تراکمی    21
2-3-1- محلول آب- برومید لیتیم در مقایسه با امونیاک – آب    22
3-3-1- سیستم هوا خنک در مقایسه با آب خنک    23
4-3-1- استفاده مستقیم از گاز شهری در مقایسه با منابع دیگر نظیر بخار داغ و انرژی خورشیدی    24
5-3-1- ظرفیت دستگاه    25
4-1 -مراجع    26
فصل دوم- ترمودینامیک سیکل
1-2- روش های مختلف خنک کن    28
1-1-2- خنک کردن با آب    28
2-1-2- خنک کردن با هوا    28
 
عنوان                                                                     صفحه

3-1-2- خنک کردن تبخیری    29
2-2- طرح مناسب بهمراه مدل فیزیکی و دیاگرام جریان    30
3-2- پیش فرض ها و داده های ورودی    36
4-2- خواص ترمودینامیکی و ترموفیزیکی نقاط    41
5-2- ضریب عملکرد    45
1-5-2- تعریف کلی     45
2-5-2- ضریب عملکرد ماشین جذبی     47
3-5-2- ضریب عملکرد اصلاح شده    50
6-2- مراجع    54
فصل سوم- بررسی اواپراتور
1-3- مقدمه    56
2-3- اواپراتور پاششی    57
3-3- روشی برای تخمین طول لوله در اواپراتور    58
1-3-3- انتقال حرارت    58
2-3-3- ضریب انتقال حرارت سمت مایع سرد شده    59
3-3-3- ضریب انتقال حرارت سمت مبرد    60
4-3- تبخیر لایه ای    61
5-3- روش بررسی اواپراتور    61
6-3- روش محاسبات    62
1-6-3- آب خنک شونده     62
2-6-3- محاسبات داخل لوله    63
3-6-3- محاسبات برای دیواره لوله    65
4-6-3- محاسبات خارج لوله    66
5-6-3- انتقال حرارت در اواپراتور    67
6-6-3- ضریب انتقال حرارت کلی    68
7-6-3- حل نهایی و محاسبه طول لوله    69
 
عنوان                                                                     صفحه

7-3- مراجع    69
فصل چهارم – بررسی کندانسور
1-4- مقدمه    71
2-4- توضیح    72
3-4- انتقال حرارت    72
4-4- محدوده های تغییرات در شرایط محاسبه     73
5-4- بیان پارامترها    76
6-4- ناحیه خنک شدن فاز بخار     76
7-4- محاسبه ضریب انتقال حرارت سطح لوله با هوا    77
8-4- تعاریف و معادلات برای ضریب انتقال حرارت کلی    79
9-4- تقطیر لایه ای داخل لوله    80
10-4- افت فشار    82
11-4- چگونگی محاسبات    83
12-4- مراجع    84
فصل پنجم- بررسی محفظه جاذب
1-5- مقدمه    86
2-5- کریستالیزاسیون    86
3-5- مقایسه سه نوع جاذب از نظر کارکرد آنها در سیکل هوا- خنک جذبی    88
1-3-5- توضیحات ضروری    88
2-3-5- محاسبات مشابه برای هر سه سیکل    89
3-3-5- مدل EISA    91
4-3-5- محاسبات مدل EISA    94
5-3-5- مدل KUROSAWA    95
6-3-5- مدل تلفیقی    99
4-5- طراحی جذب    103
عنوان                                                                     صفحه

5-5- مراجع    104
فصل ششم- ژنراتور106
1-6- مقدمه    106
2-6- مدل فیزیکی     107
3-6- ضریب انتقال حرارت سمت آب- برومیلیتیم    108
4-6- آنالیز احتراق سوخت    110
5-6- محاسبات احتراق سوخت    112
6-6- انتقال حرارت در سمت گاز    113
1-6-6- انتقال حرارت جابجایی     114
2-6-6- انتقال حرارت تابش    116
3-6-6- محاسبه سطح لوله    120
7-6- مدلهای عملی    120
8-6- مراجع    125
نتیجه گیری کلی    126

 

فصل اول
آشنایی

1-1- ماشین جذبی و کاربردهای آن
در سال 1777 یعنی بیش از 200 سال پیش یک فرانسوی به نام «نایرن» (Nairne)تئوری تبرید جذبی را ارائه کرد. در سال 1860 اولین چیلر جذبی که با آمونیاک و آب کار می کرد ساخته شد. در سال 1945 اولین چیلر جذبی به وسیله کمپانی «کریر» به فروش رسید. چیلر جذبی سرگذشتی طولانی دارد، اما در دنیا چندان نام آور نیست. شاید درک این مطلب که ماشینی بتواند با استفاده از بخار آب یا سوختن سوخت آب سرد تولید کند کمی مشکل باشد! [1] اما هم اکنون در دنیا به دلیل استفاده از منابع جدید انرژی (گاز، نور خورشید و …) استفاده ناچیز انرژی برق و عدم استفاده از مبردهای مخرب لایه ازن به این ماشین توجه خاصی شده است.
1-1-1- مفاهیم و اصول (1)
تئوری ماشین جذبی از مفهوم «افزایش نقطه جوش»
 (Boiling point increase)گرفته شده است. زمانی که یک مول از محلولی با یک لیتر آب مخلوط شود نقطه جوش در حدود    افزایش می یابد. آب خالص در شرایط استاندارد در   می جوشد، اما وقتی که چند مول از محلولی به آب افزوده شود نقطه جوش آن چند درجه زیاد خواهد شد. این مطلب که در دبیرستان آموزش داده شده برای چیلر جذبی مورد استفاده قرار گرفته است.
 تولید آب سردشده: زمانی که یک خشک کننده (desiccant) در محفظه خالی از هوا وجود دارد، بخار آب موجود در محفظه به وسیله آن جذب خواهد شد. فشار این محفظه ممکن است تقریبا در حد خلاء با دمایی حدود   باشد چرا که مقدار بخار آب بسیار کم است. (شکل 1-1)




شکل(1-1)
 اگر این محفظه به محفظه دیگری که حاوی آب خالص است و از راه یک شیر متصل شود، فشار محفظه جدید باید در حدود 0.1 بار مطلق (Absolute bar) و دمای آن در حدود   باشد. میان آب خالص و مایع خشک کننده اختلاف فشار بخار بسیار زیادی وجود دارد. زمانی که شیر باز شود بخار آب موجود در آب که محفظه خود را پرکرده است، باید به محفظه خشک کننده برود. در این زمان این مقدار زیاد بخار آب، فرایند کاهش فشار زیادی را با حرکت به محفظه خشک کننده می گذارند و مقداری از آب هم بخار خواهد شد و خود را خنک خواهد کرد.  (شکل 2-1)




شکل(2-1)
اگر لوله های آب سرد در محفظه آب خالص نصب شوند، آب در لوله ها سرد یا خنک می شود و این آب خنک می تواند برای تهویه مطبوع با فرایند سرد کردن مورد استفاده قرار گیرد.
تغلیظ دوباره: (Reconcentration) هنگامی که بخار آب اضافی که توسط مایع خشک کننده جذب می شود فرایند جذب شدن را آهسته کرده یا متوقف می سازد, فرایند سرد کردن هم پایان می پذیرد. سپس مایع خشک کننده اشباع با گرمایش توسط بخار یا سوختن گاز دوباره تغلیظ می شود. (شکل 3-1)






شکل (3-1)
بنابراین مبرد جذب شده به وسیله چنین حرارتی بخار می شود، در حالی که مایع خشک کننده دوباره غلیظ خواهد شد. بخار آب در محفظه خشک کن به وسیله آب خنک کن، سرد می شود و دوباره به صورت مایع در می آید. (شکل 4-1)
شکل (4-1)
به هر حال خشک کننده به صورت جامد به آسانی به محفظه دیگر منتقل نمی‌شود و به این علت از یک خشک کننده یا جاذب (Absorbent) مایع برای چیلرهای جذبی واقعی استفاده می شود.
2-1-1- فرایندهای ترمودینامیکی درسیکل تبرید جذبی (3)
معمولی ترین فرایندهای ترمودینامیکی که در تبرید جذبی و سیستم های صنعتی جذبی اتفاق می افتند، در اینجا تشریح می شوند. این فرایندها: مخلوط شدن آدیاباتیک و غیر آدیاباتیک دو جریان گرمایش  وسرمایش شامل تقطیر و تبخیر و فرایند خفگی هستند.
مخلوط شدن آدیاباتیک دو جریان: شکل (5-1) مخلوط شدن را نشان می دهد که دو جریان دوتایی با غلظت و انتالپی مختلف در یک فرایند جریان دائم مخلوط می شوند. تعیین حالت جریان خروجی از محفظه مستلزم برقراری تعادل جرم و انرژی در حجم معیاری است که توسط محفظه اختلاط تعریف می شود.
شکل (5-1): فرایند مخلوط شدن جریان دائم و آدیاباتیک
تعادل انرژی: (1-1)                                
تعادل جرم: (2-1)                                   
و تعادل جرم برای یک جزء: (3-1)                        
با حذف   از معادله های (1-1) و (2-1):    
معادله (4-1) خط مستقیمی را روی نمودار h-x تعریف می کند، همانطور که در شکل(5-1) نشان داده شده است، حالت 3 باید روی این خط قرار داشته باشد. می‌توان نشان داد که:
(5-1)                                      
(6-1)                                     
می توان از نمودار h-x برای حل مسائل مخلوط شدن استفاده کرد. اما این روش هنگامی که حالت نهایی در ناحیه مخلوط قرار داشته باشد کمی پیچیده است.


دانلود با لینک مستقیم