در جولای سال 1933 آسانسوری دربرج 70 طبقه دریوکوهاما با سرعت mΚ 45 به عنوان سریعترین آسانسور افتتاح شد. برای دست یابی به چنین سرعت بدون اینکه معده ی مسافرین در طبقه ی هم کف جا بماند آسانسور به جای اینکه ناگهان حرکت کند برای مدت بیشتری شتاب میگیرد هنگام بالا رفتن فقط در طبقه 27 به سرعت ماکزیمم می رسد و 10 طبقه بعد شروع به کاهش سرعت می کند در نتیجه مثل آسانسور های آسمان خراش که به شتاب اوج خود میرسد که کمی کمتر از 10/1 نیروی جاذبه است در ساخت این آسانسور نوآوری های قابل توجهی به کار گرفته شده است تا امنیت و راحتی قابل قبول داشته باشد. ترمزهای سرامیکی خاص ساخته شده اند زیرا نوع فلزی آن ذوب می شود سیستم کنترل کامپیوتری نوسانات را میرا میکند آسانسور به صورت زیر طراحی شده تا پارازیت های باد به هنگام بالا رفتن یا پایین رفتن موجب ناراحتی نگردد ویک سیستم کنترل برای حرکت آسانسور در شکل دیده می شود .
تابع تبدیل سیستم حلقه باز:
G(S)=1/(S3+3S2+3S)
تابع تبدیل سیستم حلقه بسته:
....
تعداد صفحات : 14 صفحه
نوع فایل : word (قابل ویرایش )
دانلود پایان نامه آماده
دانلود پایان نامه رشته روانشناسی پایه فیزیولوژیک درک حرکت و حس با فرمت ورد و قابل ویرایش تعدادصفحات 85
حس عمقی:
اولین بار یک فیزیولوژیست اسکاتلندی به نام Bell (1826) پایه فیزیولوژیک درک حرکت و حس را مطرح نمود. بدین صورت که بین مغز و عضله یک چرخه عصبی وجود دارد و ریشه¬های قدامی پیام را از مغز به عضله می¬فرستند و ریشه¬های خلفی حس وضعیت را از عضله به مغز می¬برند. Bell بیان می¬کند که حس وضعیت و حس حرکت با انقباض عضله تحریک شده و پیامهای آوران به مغز فرستاده می¬شود (Bell et al. 1826). پاتولوژیست و آناتومیست انگلیسی به نام Bastian (1887) آگاهی از انجام حرکت را حس حرکت نامید (Kinaesthesia) و عنوان کرد که بوسیله¬ی این حس پیچیده قادر به درک وضعیت و حرکت اندامهای خود هستیم و می¬توانیم تمایز ایجاد کنیم و توسط آن مغز ما قادر به هدایت ناخودآگاه بیشتری روی حرکات خواهد بود ( Bastian et al. 1887). محققان از صد سال پیش به آگاهی از وضعیت سگمانهای بدن توجه کرده اند. شرینگتون (1906) آگاهی از وضعیت سگمانهای بدن را حس عمقی نامید و این کلمه را از لاتین گرفت که Re (ceptus) به معنی دریافت کردن و Proprious به معنای از خود می-باشد. او طبقه¬بندی حواس را به طریق زیر انجام داد. 1ـ حس عمقی و کینستزیا (Proprioception & Kinaesthesia) که شامل حس وضعیت، حرکت، نیرو، وزن، تلاش، فشار، ارتعاش و تعادل می-باشد. 2- دما(temperature) شامل سرما و گرما. 3ـ Nociception شامل درد. شرینگتون حس عمقی را اطلاعات آورانی می¬داند که منجر به حواس هوشیارانه، تعادل پوسچرال و ثبات سگمنتال می¬گردند. اطلاعات حس عمقی از آورانهای محیطی مثل گلژی تندون، دوک عضله، گیرنده¬های پوستی و مفصلی تاندون و لیگامان تأمین می¬گردد Ashton -miller et al. 2000; Stillman et al, 2002)) . بسیاری از محققین حس عمقی را ورودی آوران حسی از وضعیت مفصل و حرکت مفصل می¬دانند در حالیکه عده¬ای دیگر آن را حس وسیعتری می¬دانند که کنترل عصبی – عضلانی را در برمی¬گیرد و علاوه بر حس تحریکات آوران، کنترل عصبی – عضلانی، پردازش تحریکات و پیامهای خروجی را از طریق سیستم عصبی – عضلانی نیز شامل می¬شود. حواس عمقی آگاهانه شامل حس حرکت (کینستزیا)، حس وضعیت مفصل و حس نیرو می¬باشد (Reiman et al, 2002). از دیدگاه دیگر حس عمقی یکی از اجزای حس پیکری است. این دیدگاه حس پیکری را مکانیسم¬های عصبی می-داند که اطلاعات حسی را از بدن جمع¬آوری می¬کند. این حس¬ها در مقابل حس¬های ویژه قرار دارند که منظور از آنها به طور اختصاصی بینایی، شنوایی و بویایی است. حس¬ پیکری به سه نوع مکانیکی، حرارتی و درد تقسیم بندی می¬شود. در تعریف حس مکانیکی آن را شامل حس¬های تماس و وضعی می¬دانند که بوسیله جابجا¬¬¬شدن مکانیکی پاره¬ای از بافتهای بدن تحریک می¬شود. سپس حس عمقی را به عنوان حس¬هایی که از بافتهای عمقی نظیر لیگامان¬ها، عضلات و استخوانها می¬آیند تعریف می¬کنند. حس عمقی دو سطح دارد: ارادی و غیر ارادی با شروع رفلکسی. حس عمقی ارادی قادر به تأمین عملکرد مفصل در ورزش و فعالیت می¬باشد و حس عمقی غیرارادی، فعالیت عضلانی و شروع ثبات رفلکسی مفاصل را از طریق گیرنده¬های عضله تنظیم می کند. اساس حس عمقی انتقال فیدبک عصبی به CNS از طریق مکانورسپتورهای عضلانی و مفصلی است. مکانورسپتورها ساختار نورواپی تلیال تخصص یافته¬ای هستند که از بافت پیوندی منشأ می¬گیرند و تغییر شکل مکانیکی خود را به سیگنال¬های عصبی کد¬گذاری¬شده تبدیل می¬کنند که به CNS منتقل می¬شود. مکانورسپتورها در کپسول مفصلی، تاندون، لیگامان، عضلات و پوست قرار دارند. مکانورسپتورهای پوستی شامل اجسام پاچینی، انتهای عصبی آزاد، اندام انتهایی مو و دیسک¬های مرکل هستند. مکانورسپتورهایی که درون کپسول مفصلی قرار دارند شامل پایانه¬های رافینی و پاچینی و پایانه¬های برهنه عصبی هستند. پایانه¬های رافینی درون کپسول مفصلی قرار دارند و بیشتر در آن سطحی از مفصل هستند که هنگام اکستنشن مفصل تحت فشار قرار می¬گیرند. پایانه¬های رافینی به استرس مثلاً بار یا لود بهتر از استرین مثلاً جابجایی پاسخ می¬دهند. پایانه¬های پاچینی بطور گسترده¬ای در طول مفصل در بافت پیوندی اطراف پراکنده هستند. آنها نسبت به فشرده شدن بافتی که درون آن قرار دارند پاسخ می¬دهند. به نظر می¬رسد که پایانه¬های پاچینی اطلاعاتی مربوط به افزایش یا کاهش شتاب در حرکت¬های مفصل تهیه می¬کنند. تحریکات کوچک فیبرهای عصبی که از پایانه¬های پاچینی منشأ گرفته¬اند با حس فشرده شدن ارتباط دارد. پایانه¬های برهنه عصبی بطور اولیه به محرک¬های آسیب¬رسان پاسخ می¬دهند. این پایانه¬ها در انتهای روتاسیون مفاصل پاسخ می¬دهند و در هنگام التهاب مفصل حساس می¬شوند. مکانورسپتورها در واحدهای عضلانی – تاندونی شامل دوک¬های عضله و گلژی تاندون¬ها هستند. گلژی تاندون مکانورسپتوری است که در تاندونها قرار دارد و عضله را از overload شدن حفظ می¬کند و به فشار وارد بر تاندون پاسخ می-دهد که این فشار از طریق انقباض عضله و یا از طریق افزایش طول پسیو عضله بر تاندون وارد می¬شود. تحریک گلژی تاندون به مهار نورون حرکتی منجر می¬شود که به عضله حاوی گلژی تاندون می¬رود و نیز منجر به تحریک نورونهای حرکتی می¬شود که به عضلات آنتاگونیست می¬روند. دوک عضلانی گیرنده پیچیده فاقد کپسول می¬باشد که از 3 تا 10 فیبر داخل دوکی تشکیل شده و در عمق عضلات اسکلتی قرار دارد. دوک عضلانی تغییر طول فیبرهای عضله و سرعت تغییر طول را کشف می¬کند. این مکانورسپتور به عنوان یک مقایسه¬ کننده، طول دوک عضلانی را با طول عضله اسکلتی مقایسه می¬کند. اگر طول فیبرهای خارج دوکی که در اطراف دوک قرار گرفته¬اند کمتر از طول فیبرهای داخل دوک باشد فرکانس ایمپالس¬هایی که از گیرنده تخلیه می¬شود کاهش می¬یابد. وقتی که قسمت مرکزی دوک عضله بواسطه فعالیت فیبرهای گاما تحت کشش قرار می¬گیرد قسمت گیرنده¬ی دوک ایمپالس¬های بیشتری را صادر می¬کند که این خود باعث تحریک رفلکسی ستون¬های حرکتی آلفا و فعال شدن فیبرهای عضلانی خارج دوکی می¬شود 1991; Biedert et al. 2000) et al Guyton) . محققان معتقدند که دوک¬های عضلانی مهمترین گیرنده¬هایی هستند که برای تعیین خم¬شدگی مفصل در اواسط محدوده¬ی حرکت آنها به کار می¬روند و در کنترل حرکت عضلات نیز نقش فوق¬العاده مهمی دارند.اهمیت نقش دوک عضلانی را آنجایی می¬توان فهمید که وقتیکه اعصاب حسی که از مفصل و بافتهای پوستی می¬آیند بی¬حس شوند احساس حرکت مفصل کاهش می-یابد اما از بین نمی¬رود و این امر به دلیل ورودیهایی است که از دوک¬های عضلانی می¬آیند. همچنین برای کارهای دقیق و ظریف، تحریک دوک¬های عضلانی با پیامهای آمده از ناحیه تسهیل کننده مشبک بصل¬النخاع باعث تثبیت وضعیت مفاصل می¬شود (Biedert et al. 2000). 1ـ
همکاری سه سطح کنترل حرکتی در سیستم عصبی:
کنترل حرکت و پوسچر به یک جریان مستمر اطلاعات درباره وقایع پیرامون بستگی دارد. پاسخهای حرکتی عموماً تحت سه سطح کنترل حرکتی قرار دارند. a) طناب نخاعی برای رفلکس-های ساده b) منطقه تحتانی مغز برای پاسخهای پیچیده¬تر c ) کورتکس مغز برای پیچیده¬ترین پاسخ¬ها. همچنین مخچه و عقده-های قاعده¬ای مناطق زمینه¬ای حرکتی هستند اگر مناطق زمینه¬ای مستقیماً فعالیت نورون حرکتی را کنترل نمی¬کنند اما وجود آنها برای مدوله کردن و تنظیم فرمانهای حرکتی که از مراکز حرکتی صادر می¬شود ضروری می¬باشد. بنابراین اطلاعات حس عمقی در هر کدام از این مراکز کدگذاری و پردازش می¬شوند. بالاترین سطح تنظیم، کورتکس سوماتوسنسوری است که اطلاعات حس عمقی را به گونه¬ای پردازش می¬کند تا یک آگاهی هوشیارانه از حس وضعیت مفصل و حرکت مفصل ایجاد کند. قسمت حرکتی کورتکس اطلاعات حس عمقی را مستقیماً از محیط و به طور غیرمستقیم از مخچه، عقده¬های قاعده¬ای و کورتکس سوماتوسنسوری دریافت می¬کند. اعتقاد بر این است که درون این مناطق حرکتی کورتکس است که اطلاعات حس عمقی ذخیره می¬شود تا در فرمانهای حرکتی نزولی بعدی مورد استفاده قرار گیرد. سطوح نخاعی کنترل حرکتی، اطلاعات حس عمقی را بطور غیر هوشیارانه ارزیابی و پردازش می¬کند. بین این دو مرکز کنترل حرکتی (نخاع و کورتکس) ساقه مغز قرار دارد که سیگنالهای حس عمقی را از طریق اطلاعات آوران از مراکز وستیبولار و بینایی و دیگر ورودی¬های سوماتوسنسوری دریافت می¬کند و کارهای کنترل اتوماتیک مثل تعادل پوسچرال روی آن انجام می¬دهد. ساقه مغز به عنوان یک ایستگاه رله کننده بین کورتکس و طناب نخاعی عمل می¬کند. تمام اطلاعات ورودی در مورد تنشن دقیق و وضعیت مفاصل، عضلات، تاندونها و وضعیت بدن را ثبت می¬کند و سپس مخچه پاسخ صحیح برای ایجاد حرکت مطلوب را تعیین می¬کند.
دانلود سمینار کارشناسی ارشد مهندسی عمران مدیریت حرکت آسانسور در ساختمان های بلند با فرمت pdf تعداد صفحات 111
این سمینار جهت ارایه در مقطع کارشناسی ارشد طراحی وتدوین گردیده است وشامل کلیه مباحث مورد نیاز سمینارارشد این رشته می باشد.نمونه های مشابه این عنوان با قیمت های بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی مااین سمینار رابا قیمت ناچیزی جهت استفاده دانشجویان عزیز در رابطه با منبع اطلاعاتی در اختیار شما قرار می دهد.حق مالکیت معنوی این اثر مربوط به نگارنده است وفقط جهت استفاده ازمنابع اطلاعاتی وبالا بردن سطح علمی شما دراین سایت ارایه گردیده است.
کنترل حرکت در انیمیشن و شبیه سازی
خلاصه:
این مقاله درباره تکامل انیمیشن و شبیه سازی و تجسم و رابطه آنها است و 2 گرایش موجود است.
1)قانون های فیزیکی که مشهور هستند و در گسترش انیمیشن تأثیر دارد.
2)قانونهای فیزیکی که مشهور نیستند و تکنیک انیمیشن به درک آن کمک می کند. ما مدلهای توصیف شده برای تولید یک امر بدون داشتن اطلاعاتی درباره آن و مدلهای ایجاد شده در اثر همکاری بین مدلهای توصیفی و مدلهای ایجادی را تشخیص دادیم وبه اندازه انسان و ماشین درباره آن بحث شده است و سرانجام پر توسعه انیمیشن به سمت کنترل اتوماتیک حرکت و جهت یابی حرکت و رفتار انیمیشن تأکید شده است.
1)انیمیشن ، شبیه سازی
مقدمه
هر فعالیت که وابسته به زمان باشد ممکن است به وسیله انیمیشن، گرافیک نشان داده شود. برای نمونه حرکت یک پاندول، پرواز یک زنبور یا انفجار یک آتشفشان، بعضی پدیده ها هستند که خیلی پیچیده هستند و نه علمی و نه ریاضی هستند. ممکن است حرکت بوسیله مدلهای سنتی انیمیشن keyfram نشان داده شده. اخیرا استفاده از قانونهای فیزیکی برای ایجاد انیمیشن مورد علاقه قرار گرفته است و 2گرایش متفاوت داریم.
1)قانونهای فیزیکی که در گسترش انیمیشن تأثیر دارد.
2)تکنیک انیمیشن به درک قانونهای فیزیکی کمک می کند.
1-2 اولین تکامل انیمیشن بر اساس فیزیک
در ابتدا برای اجراء انیمیشن، کامپیوتر به انیماتور کمک می کرده و تکنیک انیمیشن بر اساس تکنیک انیمیشن key fram نامیده شده به 3 دسته تقسیم می شود. و بعد از آن فرمان های انیمیشن و سیستم های راهنمای جهت یابی گسترش یافته اند.
در نسل بعدی سیستم های کنترل حرکت انیمیشن به طور اتوماتیکی انجام می شده، استفاده از A.I و تکنولوژی رباتیک. مخصوصا حرکت در یک سطح و قانونهای فیزیکی محاسبه شده. این به این معنی است که در اثر تحقیق و پژوهش مدلهای فیزیکی برای گسترش انیمیشن پیدا می شود. هدف ما پیدا کردن یک مدل فیزیکی معتبر نیست ولی داشتن یک شبیه سازی واقعی از یک حرکت است. ما کاراکترهای یک شکل و خاصیت دینامیکی را به موضوعات فیزیکی ارتباز می دهد برای ساختن یک فرمول ریاضی که دو موضوع ترتیب، حرکت و ترتیب نور را در بر داشته باشد فعالیت زیادی انجام شده است.
در مدل کردن اشیاء سفت و سخت (e.g.car) و تغییر شکل و انعطاف پذیر بودن اشیاء (e.gchain) و یا مجموعه ای از موجودات زنده (e.gbirds) مثال هایی وجود دارد که رفتار آنها را تحت تئوری های متفاوت مورد بررسی قرار می دهد.
3-1 دومین تکامل تجسم مدل های علمی
آزمایشات دانشمندان با استفاده از روش های جدید و تجسم یک راه برای گسترش طراحی مدل است. پیشرفت انیمیشن در زمان نشانه ای از نتیجه های مدلهای قبل است. در جهان علمی ما پدیده های طبیعی وجود دارند که بعضی از انها مرئی نیستند ولی با این وجود به کمک تجسم (شبیه سازی) می توانیم چگونگی پیشرفت در فضا و زمان را درک کنیم. موضوع اصلی انیمیشن فیزیکی یک پدیده یک دید علمی به آن پدیده است.
پدیده های مدل شده از محاسبات شبیه سازی که بر اساس تئوری فیزیکی که دارای نظم هستند تشکیل شده است این نمونه ها برای شکل های هندسی تعریف شده اند. اما یک تجسم نیاز به مجموعه ای از پارامترها دارد. قدم دوم یا قدم فراتر ما نشان دادن
مدل فیزیکی است.
بعضی مواقع یک شکل هندسی با جمع چند پدیده ارتباط دارد. حتی در این مورد نیز ما برای استفاده از هندسه در تجسم نمی توانیم تصمیم بگیریم، نسبت یک مدل فیزیکی با یک پدیده است مثل دیگر نسبتها .
4-1 شبیه سازی و انیمیشن در تجسم علمی
وقتی که ما با مشکلات علمی روبرو می شویم، از هنگامی که مشاهده دقیقی از اتفاق در دست داریم در مرز شبیه سازی هستیم. ما می توانیم نیروهای لازم بدست آوردن یک هدف خاص را محاسبه کنیم.
اما اول ما باید مقدار کمی از انیمیشن و شبیهسازی را تعریف کنیم.
انیمیشن کامپیوتری
انیمیشن کامپیوتری از به وجود آمدن یک سوی چارچوب بوسیله کامپیوتر تشکیل شده است. وقتی که این چارچوبها به ترتیب اجرا شوند با یک صفحه متغیر دارم.
انیمیشن کامپیوتر عمل متقابل فرآیند انیماتور است. شکل های گرافیکی خلق شده به کمک کامپیوتر بر اساس عقیده متفاوت بوده و پایه های اساسی انیمیشن هستند.
انیمیشن کامپیوتر پایه تئوری و تکنولوژی هستند که برای کمک کردن به انیماتور در مشخص کردن و به تصویر کشیدن تغییر موقعیت ما کاربرد دارد.
کامپیوتر شبیه ساز:
شبیه ساز کامپیوتر یک انیمیشن کامپیوتر است که ترتیب شبیه سازی شده از یک دنیای واقعی را نشان می دهد.
مدل های ریاضی پایه اساسی کامپیوتر شبیه ساز هستند. استفاده کننده می تواند با سیستم گرافیک شبیه سازی کند و نتیجه ذکر یک جهت از مدل فیزیکی است. اگر بعضی با فکر عمل کنند سپس این خیلی از کامپیوتر شبیه سازی شده دور است.
کنترل حرکت در تجسم علمی
انیمیشن کامپیوتری سنتی مربوط می شود به 2 مدل سینه ماتیک و دینامیک. مدل های سینه ماتیک دارای استفاده آسانتری هستند و زمان مصرف کوتاه دارند و در موارد سرگرمی از انها استفاده می شود با این دو مدل انیماتورها می توانند مسیر یک شی را تعریف کنند و مدل سینه ماتیک در موقعیتهای ساده استفاده می شود. برای مثال چرخش یک مولکول یا نوسان یک پاندول. شبیه سازی بر اساس مدل های دینامیکی حقیقی است، این مدل ها شامل اطلاعات خاص فیزیکی مثل توده ماده می شود.
تغییرات یک پدیده محاسبه شده و تحت شرایط اولیه خاص، مدارها(سیرها) فوق زمان) از المانهای معنی دار محاسبه شده است. از یک دید مدل کردن شامل مراحل شبیه سازی زیر می شود.
1)مدل های دینامیکی
2)شبیه سازی
3)مدل سینه ماتیک
4)مدل هندسی
5)تصویر کردن جنب و جوش
مدل سینه ماتیک را می توان مدل ثبت شده نیز نامید این برابر با فایلهای دیتا بدست آمده از محاسبات است. مشکل با اتفاقات علمی مورد استفاده برای شبیه سازی است، این پدیده طبیعی و تصویر است. طراح رفتار شیء دینامیک با پا علت روحی آن طراحی می کند. او چگونگی این حرکت را تصور مرده و چگونه واکنش می دهد، برخورد می کند، فشرده می کند، هل می دهد، پیچانده کردن آن و … بنابراین یک سیستم انیمیشن مجبور است همه اینها را فراهم کند و با وسایل کنترل استفاده کننده را به ترجمه زبان انها قادر سازد. روش کنترل حرکت کدامیک می باشد و به 2 فرم اصلی است. از یک طرف مدل های شرح داده شده که برای تولید یک حرکت بدون داشتن اطلاعات درباره مسبب آن مورد استفاده قرار می گیرند و از طرف دیگر مدل های ایجادی وجود دارند که علت تولید اثرات را شرح می دهند.
برای مدل های توصیف شده تشخیص تکنیک سنتی key frame در انیماتور(تصویرگر خاص) سینه ماتیک با فراهم کردن ارزش key frame در بین قاب ها به وسیله کامپیوتر قابل دسترسی است. مدل های سینه ماتیک بر اساس دستورالعمل های ضمنی است، برای نمونه سینه ماتیک معکوس که حرکت داخلی حلقه یک زنجیر از آخرین حلقه مسیر را حساب کرده است
مدل های توصیفی یک کنترل را به انیماتور می دهند اما وقتی تعداد پارامترها برای کنترل خیلی زیاد باشد دچار کمبود شده(برای نمونه بدن انسان). و رفتار دینامیک برای برنامه ریزی سخت و مشکل است( برای نمونه حرکت یک موجود دریا). مدل های ایجاد شده از شبیه سازی کامپیوتری بوجود می آیند و دارای رفتار خاص هستند. استفاده کردن از قانونهای فیزیکی برای تولید یک حرکت نیست و عقیده های جدیدی در این رابطه توسط چند داشنمند داده می شود.
برای یک هنرمند شبیه سازی، تولید پدیده فیزیکی مثل شبیه سازی علمی پدیده نیست، اما تولید واقعی و نتیجه انیمیشن بر طبق عدد و محاسبه نیست. انیماتور یک هنرمند است نه یک دانشمند در انیمیشن قواعد فیزیکی و سنتی با هم همکاری می کنند. بنابراین ایجاد کامپیوتر شبیه ساز و تکنیک یک سیستم انیمیشن مشکلات جدیدی در رابطه با ساختار سیستم و پذیرش آن و دستگاه های جانبی به همراه دارد.
2-2 مشترکات ماشین و انسان
به منظور گسترش ارتباط بین دو کلاس کنترل حرکت (ایجادی و توصیفی) باید پارامترهای مدل را تجزیه و تحلیل کرد. یعنی پارامترها را طوری انتخاب کرده که نزدیک به زبان انیماتور باشد و اثرات مورد نظر را ایجاد کند. برای نمونه برای خلق یک منفی بعضی از تصاویر واسطه به انیماتور برای تعدیل کردن خاصیت منفی یا کشش کمک می کنند، یک راه انحنا دار و شکل خاص را در نتیجه ادامه دادن این روش بدست می آوریم. برای مدل های مادی دو نکته وجود دارد. چگونگی انتخاب ارزش این پارامترها وچگونگی پیش بینی اثرات ان. مثالی از سیستم چند گانه انیمیشن به وسیله دینامیک: ذکر می کنیم برای کنترل انیمیشن، انیماتور مجبور به تطبیق دادن 2 نمونه پارامتر است، اثر نیروی رانش و چرخش و ارزش وسیله ارتباط انرژی(سفتی و سختی) و عامل دمپینگ یک فنر که نوع سیستم عکس العمل داخلی و خارجی را تعیین می کند. اگر استفاده کننده ارزش پارامترها را بداند، به وسیله آزمایشات رفتار سینه ماتیک یک سیتستم را بدست می آورد. انیماتور ارزش پارامترها را قدم به قدم و بعد از هر چارچوب(قاب) می داند و به این واسطه حرکت مورد علاقه خود را تنظیم می کند، برای بهتر استفاده کردن از دینامیک جلو استفاده از دستگاه کمکی در یک زمان واقعی برای شبیه سازی است مثلا در شبیه سازی یک پرواز یا رانندگی، این اثرات باعث توجه به همکاری میان مدل های توصیفی و ایجادی شده است.
(ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
هنگامی که کسب و کاری را راه می اندازید، آخرین چیزی که می خواهید در موردش فکر کنید، شکست است اما اگر اصلی ترین دلایلی را که باعث ناکامی کسب و کارها می شوند بدانید، بهتر می توانید از شکست اجتناب بورزید. 6 دلیل زیر، اصلی ترین عواملی هستند که خیلی زود یک کسب و کار را به روزهای پایانی می رسانند.