پایان نامه برای دریافت درجه دکترای حرفه ای پزشکی
عنوان:بررسی تأثیر قطره داخل بینی آمفوتریسین B در بهبود علایم بالینی مبتلایان به رینوسینوزیت مزمن در بیمارستانهای بوعلی وامیرالمومنین (ع) جوادیه شهر تهران در سال 1387
سینوزیت مزمن(CRS) همیشه پس از سینوزیت حاد ایجاد می شود و تشخیص آن بر اساس شکایات پایدار بیمار برای حداقل 12 هفته مطرح می شود.
CRS یک بیماری وسیع و صعب العلاج بینی و سینوسهای پارانازال می باشد که در دامنه وسیعی از علایم و تغییرات التهابی مخاطی تظاهر می یابد. این بیماری شایعترین بیماری مزمن در ایالات متحده می باشد.
مطالعات جدید پیشنهاد می کنند که بیشتر بیماران با سینوزیت غیر وایرال همزمان دچار عفونت باکتریال و قارچی هستند بطوریکه در ترشحات بینی 96% این بیماران شواهدی مبنی بر وجود قارچ دیده شده است.
مطالعه ما از نوع کارآزمایی بالینی بوده و بر روی 35 بیمار مبتلا به سینوزیت مزمن مقاوم به درمان که در سال 1387 به درمانگاههای ENT بیمارستانهای بوعلی و امیرالمومنین (ع)تهران مراجعه کرده بودند انجام شد این بیماران یک ماه تحت درمان با آمفوتریسین B قرار گرفتند.
یافته های ما نشان داد تنها 5 بیمار علایمشان تغییر نکرده بود در حالیکه بقیه همه کاهش علایم را گزارش کرده بودند. همچنین درمان یک ماهه کامل موجب کاهش علایم بیشتر در بیماران شده بود.
در نهایت مطالعه ما نشان داد درمان ضد قارچی با آمفوتریسین B به مدت یکماه
می تواند از شدت علایم بیماران مبتلا به CRS واضحاً بکاهد.
این پژوهش در 4 فصل با عناوین:
فصل اول: مقدمه و پیشینه تحقیق
فصل دوم:مواد و روشها
فصل سوم: نتایج خام
فصل چهارم:Conclusion(نتیجه گیری)
پیوست ها
و با فرمت word در 40 ص تنظیم گشته است.
دانلود پایان نامه دکترای زبان انگلیسی با موضوع The Semantics and Pragmatics of Demonstratives in English and Arabic که شامل 272 صفحه و بشرح زیر میباشد:
نوع فایل : PDF قابل ویرایش
Abstract
This research investigates the semantics and pragmatics of demonstratives in two
languages, English and Arabic, within the framework of relevance theory. The study applies
the fundamental distinction between ‘conceptual’ and ‘procedural’ semantics in an attempt to
account for the various instantiations of such referring expressions in the two languages. I
argue that demonstratives play a crucial role in aligning the discourse models of the speaker
and hearer by encoding procedural semantics instructing the hearer to maintain or create a
joint level of attention to the intended referent as opposed to other referential candidates.
Following Diessel (2006), I take it that this notion of joint attention subsumes all the
cognitive and functional roles played by demonstratives in discourse. I also argue that
demonstratives encode a (pro)concept of distance which falls under the scope of the
attention-directing procedure, thus creating the internal contrast between the intended referent
and other candidate referents. Within this proposal, I discuss how demonstratives can
contribute to both the explicit and the implicit levels of meaning by virtue of the interaction
between their encoded semantics and the context in a relevance-driven framework. Compared
to other referring expressions or no referring expression at all, the role of a demonstrative
achieves relevance on the implicit level. It can either highlight a certain aspect of the referent,
or encourage the creation of weak implicatures, or signal a certain cognitive/emotional
attitude towards the referent. The study is supported by an analysis of corpus data from both
languages in order to supplement theoretical proposals with attested evidence.
I further extend my analysis to include two areas. First, I discuss cases of self-repair in
spoken English discourse which involves the definite article and demonstratives. By linking
the notion of self-repair to that of optimal relevance, I shed some light on the semantic and
pragmatic differences between these two referring expressions. Second, I extend my analysis
to include other forms of demonstratives in Arabic and explore their semantic and pragmatic
behaviour in discourse. I propose a procedural account for the three forms attentional haa,
kadhaalik and haakadhaa, arguing that their contribution goes well beyond that of mere
demonstrative reference to that of being discourse markers encoding procedural constraints
on interpretation. I also investigate some alternative syntactic structures where
demonstratives occur, arguing that the stylistic effect of emphasis which they give rise to can
be explained in terms of relevant cognitive effects.Contents
Contents
Abstract ii
Acknowledgements iii
List of Tables and Figures vii
Arabic Transcription Notations viii
List of Abbreviations ix
Chapter 1: Introduction 10
1.1 Aims of the research 10
1.2 Theoretical 14
1.3 Data 15
1.3.1 The English Corpus (ICE-GB) 16
1.3.2 The Arabic Corpus (NEMLAR) 19
1.4 Structure of the thesis 23
Chapter 2: Previous studies 26
2.1 Reference 26
2.2 Demonstratives in English 29
2.3 Demonstratives in Arabic 33
2.4 Cognitive approaches 39
2.4.1 The Givenness Hierarchy 40
2.4.2 Demonstratives and interaction 45
2.3.3 Demonstratives and joint attention 48
2.5 Summary 52
Chapter 3: Relevance theory 54
3.1 Relevance theory 54
3.1.1 Relevance theory and communication 54
3.1.2 Inference and understanding 57
3.1.3 Explicating and implicating 61
3.1.4 Relevance and reference 65
3.2 Concepts and procedures 70
3.2.1 The conceptual-procedural distinction and the explicit-implicit distinction .......... 72
3.2.2 The conceptual-procedural distinction and truth 76
3.2.3 Types of concepts 78
3.3 Summary 81
Chapter 4. The semantics and pragmatics of demonstratives 83
4.1 The semantics of demonstratives 83
4.1.1 What do demonstratives encode? 84
4.1.2 Demonstratives and 86
4.1.3 Demonstratives and attention 92
4.1.4 Distance, attention and relevance 101
4.2 The interpretation of demonstratives 107
4.2.1 Demonstratives and explicit content 107
4.2.2 Demonstratives and implicit content 125
4.2.3 First-mention demonstratives 136
4.3 Summary 142
Chapter 5. Extending the analysis: Demonstratives and Self-Repair in English 143
5.1 Demonstratives and self-repair 143
5.1.1 The definite article and demonstratives 144
5.1.2 Self-repair and relevance 151
5.1.3 The this/that 154
5.1.4 This/that the 157
5.1.5 Distal or proximal? 161
5.2 Summary 164
Chapter 6. Extending the analysis: Other forms of demonstratives in Modern Standard Arabic165
6.1 The morphology and semantics of demonstratives in MSA 165
6.1.1 Demonstrative forms in MSA and varieties of Arabic 167
6.1.2 Arabic and procedural meaning 171
6.2 Case studies 177
6.2.1 Attentional haa: procedure and attention 177
6.2.1.1 Approaches to attentional haa 179
6.2.1.2 The relevance of attentional haa 183
6.2.2 kadhaalik: demonstrative or discourse 191
6.2.2.1 A distinction 192
6.2.2.2 kadhaalik as a demonstrative 195
6.2.2.3 kadhaalik as a discourse marker 205
6.2.3 haakadhaa: deictic, anaphoric and discourse functions 219
6.2.3.1 A distinction 221
6.2.3.3 haakadhaa in discourse marker uses 227
6.3 A note on demonstratives and the interpretation of emphasis 235
6.3.1 Noun + demonstrative 236
6.3.2 Proper noun + demonstrative 242
6.3.3 Demonstrative + 3rd person pronoun + noun 249
6.4 Summary 254
Chapter 7. Conclusion 255
7.1 Summary 255
7.2 Future research 259
References 262
List of Tables and Figures
Table 1: The English corpus chosen for this study from the ICE-GB 19
Table 2: The Arabic corpus chosen for this study from NEMLAR 23
Table 3: Demonstrative forms in MSA 34
Table 4: The lexical semantics of the pronoun she (from Nicolle 1997: 49) 104
Table 5: Demonstratives in MSA according to Holes (2004) 169
Table 6: Proximal demonstrative forms in Arabic dialects 169
Table 7: Distal demonstrative forms in Arabic dialects 170
Table 8: Number of instances of kadhaalik in the corpus 206
Table 9: Number of instances of haakadhaa in the corpus 221
Figure 1: Proposed semantic analysis for English/Arabic demonstratives 12
Figure 2: Screen shot of that concordance in the ICE-GB using the ICECUP 18
Figure 3: Screen shot of haadhihi concordance in NEMLAR using LOLO 22
Figure 4: The Givenness Hierarchy according to Gundel et al. (1993) 41
Figure 5: Four types of meaning according to Wilson & Sperber 74
Figure 6: The morphology of haadhaa 177
Figure 7: The morphology of kadhaalik 191
Figure 8: The morphology of 220
دانلود پایان نامه دکترای مترجمی زبان انگلیسی Domain Adaptation for Translation Models in Statistical Machine Translation که شامل 147 صفحه و بشرح زیر میباشد:
نوع فایل : PDF
Abstract
We investigate methods to adapt translation models in SMT to a specific target domain.
We discuss two major problems, unknown words because of data sparseness in the (indomain)
training data, and ambiguities arising from out-of-domain parallel texts with different
domain-specific translations. We propose novel solutions to both problems.
The main contributions of this thesis are as follows:
We present a novel translation model architecture that supports domain adaptation at
decoding time from a vector of component models. The combination is implemented
through instance weighting, and all statistics necessary for the computation of translation
probabilities are stored in the models.
We present an architecture to combine multiple MT systems, using techniques and
ideas from domain adaptation. The hypotheses by external MT systems are treated
as out-of-domain knowledge, and combined with in-domain data through instance
weighting.
We introduce a sentence alignment algorithm that is able to robustly align even noisy
parallel texts. We found that higher-quality sentence alignment of the in-domain parallel
text has a significant effect on translation quality in our target domain.
We propose new translation model features that express how flexible, or general, translation
units are, in order to prevent translations that only occur in the context of multiword
expressions from being overgeneralised.
Wir untersuchen Methoden zur Anpassung von Übersetzungsmodellen in SMÜ an eine bestimmte
Zieldomäne. Wir diskutieren zwei Hauptprobleme: spärliche Daten in den Trainingsdaten
der Zieldomäne führen zu unbekannten Wörtern, und der Herbeizug von Daten
aus Fremddomänen verursacht Mehrdeutigkeiten. Für beide Probleme präsentieren wir neue
Lösungsansätze.
Die Hauptbeiträge dieser Dissertation sind folgende:
Wir präsentieren eine Architektur für Übersetzungsmodelle, welche aus einem Vektor
von Teilmodellen besteht und Domänenadaption während der Übersetzung selbst
erlaubt. Die Kombination der Teilmodelle wird über eine Gewichtung von Vorkommenshäufigkeiten
vollzogen.
Wir stellen eine Architektur zur Kombination verschiedener Übersetzungssysteme
mittels Techniken aus der Domänenadaption vor. Die Hypothesen externer Übersetzungssysteme
werden dabei wie Wissen aus einer Fremddomäne behandelt, und mit
Daten aus der Zieldomäne kombiniert.
Wir präsentieren ein Satzalignierungsverfahren, welches auch verrauschte parallele
Texte robust auf Satzebene alignieren kann. Durch die Erhöhung der Satzalignierungsqualität
erreichen wir eine signifikant bessere Übersetzungsqualität.
Wir schlagen neue Merkmale für Übersetzungsmodelle vor, welche die Flexibilität
von Übersetzungseinheiten ausdrücken, und verhindern, dass inflexible Übersetzungen,
welche nur innerhalb eines Mehrwortausdrucks vorkommen, übergeneralisiert
werden.
Contents
1 Introduction 17
1.1 Problem: Domain-specific Statistical Machine Translation 17
1.2 Thesis Contributions 18
1.3 Outline 19
2 Statistical Machine Translation 21
2.1 Statistical Models for Machine Translation 21
2.1.1 Word-based SMT 21
2.1.2 Log-Linear Models 22
2.2 Phrase-based Translation Models 23
2.2.1 Learning Phrase Translations 23
2.3 Discriminative Training 24
2.4 SMT Evaluation 25
2.4.1 BLEU and METEOR 25
2.4.2 Randomness and Statistical Significance 27
2.5 Alternative Translation Models 27
2.5.1 Hierarchical and Syntax-based Translation Models28
2.5.2 N-Gram Translation Models 28
2.5.3 Continuous Space Translation Models29
2.6 Domain Adaptation in SMT 30
2.6.1 Language Model Adaptation 30
2.6.2 Translation Model Adaptation 31
3 Domain-specific Language 35
3.1 The Text+Berg Corpus 35
3.2 Europarl 36
3.3 Linguistic Differences between Text+Berg and Europarl 36
4 Building a Domain-specific SMT system 43
4.1 Experimental Data and Model Configurations 43
4.1.1 Corpora 43
4.1.2 Tools and Models 45
4.2 SMT Learning Curves: How Important is In-domain Data? 46
4.3 Summary 52
5 Improving Data Collection: Sentence Alignment 53
5.1 Related Work 55
5.2 MT-based Sentence Alignment 56
5.3 Bleualign: Algorithm 57
5.3.1 Weighting Sentence Pairs58
5.3.2 Dynamic Programming Search 58
5.3.3 Additional Alignment Procedures 59
5.4 Evaluation of Sentence Alignment 60
5.5 On the Relation Between Sentence Alignment Quality and SMT Performance 62
5.6 Summary64
6 Translation Model Combination: Tackling the Ambiguity Problem 65
6.1 Discussion of Domain Adaptation Techniques 66
6.1.1 Log-linear Interpolation66
6.1.2 Linear Interpolation 67
6.1.3 Instance Weighting 69
6.1.4 Data Selection 70
6.1.5 Priority Merge 71
6.1.6 Origin Features 71
6.2 Perplexity 72
6.2.1 Theoretical Background72
6.2.2 Translation Model Perplexity73
6.2.3 Perplexity Minimization 75
6.3 Evaluation of Domain Adaptation Techniques 76
6.3.1 Data and Methods 76
6.3.2 Results 78
6.4 The Impact of Weights 87
6.5 Domain Adaptation with Unsupervised Clustering of Training Data 91
6.5.1 Clustering with Exponential Smoothing 92
6.5.2 Model Combination 94
6.5.3 Evaluation 94
6.6 A Multi-Domain Translation Model Architecture 96
6.7 Summary 100
7 Integrating Other Knowledge Sources: Multi-Engine Machine Translation 103
7.1 Related Work103
7.2 A Multi-Engine MT Architecture 104
7.3 Translation Model Combination 105
7.4 Evaluation of Multi-Engine MT 106
7.4.1 On the Use of Perplexity for Machine-Translated Text 109
7.4.2 Combining Out-of-domain Data and Translation Hypotheses 111
7.5 Summary 112
8 Multiword Expressions and Flexibility Features 115
8.1 Introduction 116
8.2 Related Work 116
8.3 Learning Translations in SMT 117
8.4 Flexibility Features 118
8.4.1 Variants for Hierarchical Phrase-based Models 121
8.5 Filtering Hierarchical Rule Tables 122
8.6 Evaluation of Flexibility Scores 123
8.6.1 Data and Methods 123
8.6.2 Phrase-based Results 124
8.6.3 Hierarchical Results 126
8.7 Summary 127
9 Conclusion and Outlook 129
Bibliography 133
10 Appendix 147
دانلود پایان نامه دکترای زبان انگلیسی AN INVESTIGATION INTO THE USE OF ARGUMENT STRUCTURE AND LEXICAL MAPPING THEORY FOR MACHINE TRANSLATION که شامل 167 صفحه و بشرح زیر میباشد:
نوع فایل : PDF قابل ویرایش
AN INVESTIGATION INTO THE USE OF ARGUMENT STRUCTURE AND LEXICAL MAPPING THEORY FOR MACHINE TRANSLATION
Abstract
In recent work on the Lexical-Functional Grammar (LFG) formalism, argument
structure (a-structure) and lexical mapping theory have been used to explain many
linguistic behaviours across languages. It has been suggested that the combination
of c-structure, f-structure and a-structure might form a suitable architecture
for Universal Grammar. If this suggestion is valid, the LFG formalism would be a
suitable linguistic model for Machine Translation (MT). This thesis reports on the
investigations carried out on using a-structure and lexical mapping theory for aiding
various sub-tasks in MT. The two investigations described in this thesis are the
abilities of a-structure and lexical mapping theory to: (1) aid different kinds of lexical
and structural disambiguations involving verbs and prepositions, and (2) act
as a suitable medium for carrying out source-to-target language transfer. Based
on the results of these investigations, this thesis also gives an evaluation of how
well a-structure and lexical mapping theory can improve the existing models of
linguistic-based MT.
Contents
1 Introduction 1
1.1 Problems of Machine Translation ... 3
1.1.1 Why are problems in MT vital to the application of real-life MT systems? 3
1.1.2 What makes MT so difficult? .... 4
1.1.3 Linguistic Problems ....5
1.1.4 Meaning Representation .... 7
1.2 Motivation and Aims of the Research ...8
1.3 Organisation of this Thesis ... 10
2 Machine Translation 12
2.1 Different Kinds of Ambiguities .... 13
2.1.1 Lexical Ambiguity ... 13
2.1.2 Structural Ambiguity ....14
2.2 Different Kinds of MT Systems .... 15
2.2.1 Direct MT systems ... 15
2.2.2 Indirect MT Systems ....16
2.3 Practical Use of some MT Systems ..... 18
2.3.1 Systran ..... 18
2.3.2 M´et´eo ..... 20
2.3.3 Discussion ...21
2.4 Methods of Transfer ..... 22
2.5 Alternative Approaches to Machine Translation .... 24
2.5.1 Sublanguage Approach .... 25
2.5.2 Statistics-based Approach ... 27
2.5.3 Example-based Approach ... 28
2.6 Conclusion .....29
3 Lexical-Functional Grammar (LFG) 32
3.1 The LFG Formalism ..... 33
3.1.1 Constituent Structure (c-structure) ... 34
3.1.2 Functional Structure (f-structure) ... 35
3.1.3 Semantic Structure (s-structure) ...41
3.2 Lexical-Functional Grammar in Machine Translation ... 43
3.2.1 Kudo and Nomura’s Lexical-Functional Transfer .... 44
3.2.2 Kaplan et al.’s approach to MT ...45
3.2.3 Her et al.’s Lexical and Idiomatic Transfer .... 47
3.3 Conclusion .....51
4 Argument Structure and Lexical Mapping Theory 54
4.1 Thematic Roles .... 55
4.1.1 Agent ..... 56
4.1.2 Beneficiary, Recipient and Experiencer ..... 57
4.1.3 Instrument ...61
4.1.4 Theme and Patient ... 61
4.1.5 Locative .... 64
4.2 Argument Structure ..... 66
4.2.1 How to establish the a-structure(s) for a verb? ..67
4.3 Lexical Mapping Theory .... 69
4.3.1 Thematic Hierarchy ....69
4.3.2 Classification of Syntactic Functions .. 70
4.3.3 Lexical Mapping Principles ..... 71
4.3.4 Well-formedness Conditions .... 76
4.4 Lexical Mapping— A Demonstration ...76
4.4.1 With the Verb ‘give’ ....76
4.4.2 With the Morpholexical Operation ‘passive’ ... 78
4.4.3 With the Morpholexical Operation ‘applicative’ .... 78
4.5 Is A-structure another variant of Case Grammar? .... 79
4.5.1 Case Grammar .... 80
4.5.2 A-structure and Case Grammar — A Comparison ...81
4.6 Conclusion .....83
5 Using A-structure and Lexical Mapping Theory for MT 84
5.1 Parsing Source Language Sentence ..... 84
5.1.1 Differentiating V + PP from Phrasal Verb + NP ..86
5.1.2 Differentiating NP with N and PP from NP + PP .... 92
5.2 Lexical Selection .... 96
5.2.1 Lexical Selection for Ergative Verbs .. 98
5.2.2 Lexical Selection for Verbs ... 101
5.2.3 Lexical Selection for Phrasal Verbs ... 106
5.3 Aiding Sentence Generation ....108
5.3.1 Verb Copying in Chinese ... 109
5.3.2 Positioning PPs within a Chinese Sentence .... 111
5.4 Discussion .....114
5.5 Conclusion .....117
6 Dealing with the Transfer of Passive Sentences 119
6.1 Using F-structure as a medium for Transfer .. 119
6.2 Passive in English ...122
6.3 Passive in Chinese ..... 126
6.4 Differences between Passive Sentences in English and in Chinese ... 129
6.5 The Transfer from English passive sentences to Chinese .... 133
6.6 Discussion .....136
6.7 Conclusion .....140
7 Conclusion and FutureWork 141
7.1 Problems in Using A-structure and Lexical Mapping Theory inMT .... 141
7.1.1 No Matching Source-and-Target Language A-structures ...142
7.1.2 Difficulty in Establishing Appropriate A-structures ... 144
7.2 What makes this investigation successful? ... 147
7.3 FutureWork ..... 148
7.3.1 Disambiguating nouns .... 149
7.3.2 Automatic extraction of a-structures from a corpus ... 150
7.3.3 Reducing the processing time .... 150
7.4 Conclusion .....151
List of Figures
1.1 A Word-for-Word Translation .... 4
2.1 Typical building blocks of a transfer-based MT system ..17
2.2 Building blocks of an interlingual MT system ..... 17
2.3 Building blocks of a multilingual MT system using the interlingual approach .. 18
2.4 A dictionary entry for transferring ‘bug’ suggested by Her et al. (1994) .... 26
3.1 C-structure for the sentence “John played Mary a tune on the violin.” ... 34
3.2 F-structure for the sentence “John tried to play the guitar.” .... 36
3.3 F-structure for the sentence “John played Mary a tune on the violin.” ... 38
3.4 C-structure and F-structure for the sentence “John died.” .... 41
3.5 C-structure & F-structure correspondence of the sentence “John died.” .. 42
3.6 S-structure for the sentence “The baby fell.” ... 42
3.7 C-structure, F-structure and S-structure correspondence of the sentence “John died.” 44
3.8 The correspondences between different structures for source and target languages inLFG ....... 46
3.9 A minimal f-structure for transferring the idiom “to kick the bucket” suggested by Her et al. (1994) ..... 50
5.1 Two potential c-structures for the word sequence “John played on words” ... 85
5.2 F-structure for “John played on words.” ... 89
5.3 F-structure for “John played on the table.” ... 89
5.4 The lexical mapping between a-structure arguments and their corresponding syntactic functions for the sentences in Table 5.1 .... 92
5.5 A possible c-structure for “John bought a book in a bookshop in Prague.” produced
by a syntax-based parser.... 93
5.6 Another possible c-structure for “John bought a book in a bookshop in Prague.” produced by a parser.... 94
5.7 The c-structure for “John saw a girl with a dog with a telescope.” ... 96
5.8 Examples of English ergative verbs with matching Chinese counterpart ... 99
5.9 Examples of English ergative verbs with different Chinese translation in transitive and intransitive cases ... 100
5.10 A-structures and sample sentences for the English verb ‘tell’ and its Chinese counterparts ..... 102
5.11 The use of a-structures for lexical selection .. 103
5.12 Some examples on lexical selection for verbs by using a-structures ... 105
6.1 English and Chinese F-structures for “Mary was killed by John.”...130
6.2 English and Chinese F-structures for “Mary was killed.”.... 131
6.3 The English and Chinese equivalents of the sentence “Mary was given a book by John” .... 132
6.4 Skeleton of Chinese F-structure for “Mary was given a book by John.”.. 135
6.5 The final Chinese F-structure for “Mary was given a book by John.”... 136
6.6 Transferring English passive sentence into Chinese using a-structure and lexical
mapping theory .... 137
List of Tables
1.1 Different meanings of some nouns ..... 7
3.1 Different cases for the Czech proper noun ‘Jan’ ....40
5.1 Some examples of different combinations of verbs and prepositions ... 88
5.2 Different Meanings of ‘look up’ .... 107
5.3 The a-structure arguments for ‘look up’ and its Chinese equivalents ... 108
موضوع فرم: فرم پیشنهاد تحقیق پایان نامه کارشناسی ارشد و دکترای حرفه ای
قالب بندی: word ، قابل ویرایش
تعداد صفحات: 12
شرح مختصر:
اینجانب ......دانشجوی کارشناسی ارشد/دکتری تخصصی رشته ........ متعهد میشوم که نسبت به داشتن ظرفیت خالی برای اساتید راهنما و مشاور، بررسی کافی را انجام داده ام و در صورت پر بودن ظرفیت آنها هیچگونه ادعا و اعتراضی ندارم. همچنین متعهد می شوم کلیه مراحل روش تحقیق که در این پروپوزال به تصویب رسیده است را شخصاً اجرا نموده و درصورتی که خلاف آن اثبات شود، هیچگونه ادعایی نداشته و هرگونه ضوابط انضباطی را می پذیرم.