دانلود سمینار کارشناسی ارشد مهندسی نساجی کاربرد نانو ذرات نقره در تولید نانو الیاف با فرمت pdf تعداد صفحات 39
این سمینار جهت ارایه در مقطع کارشناسی ارشد طراحی وتدوین گردیده است وشامل کلیه مباحث مورد نیاز سمینارارشد این رشته می باشد.نمونه های مشابه این عنوان با قیمت های بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی مااین سمینار رابا قیمت ناچیزی جهت استفاده دانشجویان عزیز در رابطه با منبع اطلاعاتی در اختیار شما قرار می دهد.حق مالکیت معنوی این اثر مربوط به نگارنده است وفقط جهت استفاده ازمنابع اطلاعاتی وبالا بردن سطح علمی شما دراین سایت ارایه گردیده است.
دانلود سمینار کارشناسی ارشد مهندسی شیمی به کارگیری ذرات نانونقره روی کالای متشکل از الیاف طبیعی با فرمت PDF تعداد صفحات 59
این سمینار جهت ارایه در مقطع کارشناسی ارشد طراحی وتدوین گردیده است وشامل کلیه مباحث مورد نیاز سمینارارشد این رشته می باشد.نمونه های مشابه این عنوان با قیمت های بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی مااین سمینار رابا قیمت ناچیزی جهت استفاده دانشجویان عزیز در رابطه با منبع اطلاعاتی در اختیار شما قرار می دهد.حق مالکیت معنوی این اثر مربوط به نگارنده است وفقط جهت استفاده ازمنابع اطلاعاتی وبالا بردن سطح علمی شما دراین سایت ارایه گردیده است.
چکیده :
هدف از این پایان نامه ساخت نانو ذرات فریت نیکل- روی به روش همرسوبی می باشد. روش همرسوبی روشی مناسب و با صرفه و به نسبتاً سریع برای تولید نانوذراتی مانند فریت نیکل- روی می باشد. برای ساخت این نانو ذرات از روش همرسوبی شیمیایی استفاده شد.
ماده بدست آمده را در دمای حدود 600 درجه سانتیگراد به مدت2 ساعت حرارت داده شده و برای نمونه های بدست آمده براساس تغییر نسبت مولی و سرعت چرخش دستگاه همزن و مدت حرارت دهی‘ توسط پراش اشعهX ‘ تصاویر SEM و TEMمقایسه گردید. اندازه نانوذرات حدود 14 نانومتر قبل از حرارت دهی و 10 نانومتر بعد از حرارت دهی برآورد شدند. کوچکترین اندازه در نسبت مولی یک به یک و دمای 600 درجه سانتیگراد و سرعت چرخش همزن به میزان 5000 دور در دقیقه بدست آمده است.
فهرست مطالب
فصل اول: فن آوری نانو
1-1 مقدمه…………………………………………………………………………… 2
1-2 تعریف نانو تکنولوژی…………………………………………………………….3
1-3 نانو مواد……………………………………………………………………………….8
1-3-1 خواص نانو مواد………………………………………………………………………..9
1-3-2 دسته بندی نانومواد……………………………………………………………..12
1-4 زیرساختارها درنانو تکنولوژی………………………………………………..17
1-5 مواد نانو بلوری………………………………………………………………18
1-6 نانوذرات……………………………………………………………………19
1-7 نانو کامپوزیت ها……………………………………………………………………19
1-8 نانو کپسول ها…………………………………………………………..19
1-9 مواد نانو حفره ای…………………………………………………………………..20
1-10 نانو الیاف……………………………………………………………………………21
1-11 نانو سیم ها…………………………………………………………………..22
1-12 فولرین ها………………………………………………………………………………22
1-13 نانو لوله های کربنی…………..……………………………………………….23
فصل دوم: فریت ها
2-1 مقدمه…………………………………………………………………………………..26
2-1-1 تاریخچه… ………………………………………………………….26
2-1-2 خواص وکاربردها……………………………………………………………27
2-2 سرامیکهای مغناطیسی چیستندوچه کاربردهایی دارند…………………………… 27
2-3 ساختار اسپینلی……………………………………………………………………….30
2-4 ساختار اسپینلی معکوس……………………………………………………..31
2-5 چند نکته در مورد فریتها………………………………………………….31
فصل سوم: روش های ساخت فریت ها و دستگاه های اندازه گیری
3-1 روش تهیه نانو ذرات………………………………………………………….36
3-1-1 روش فیزیکی………………………………………………………………….36
3-1-2 روش فیزیکی- شیمیایی………………………………………………………………37
3-1-3 روش شیمیایی…………………………………………………………………37
3-1-3-1 همرسوبی شیمیایی…………………………………………………….37
3-1-3-2 روش هیدروترمال…………………………………………………..39
3-1-3-3 روش سل-ژل…………………………………………………………………..40
3-1-3-4 روش مایسل معکوس………………………………………………………………41
3-2 وسایل اندازه گیری نانو ذرات بکارگرفته شده دراین پایان نامه و شناسای آنها………….. 43
3-2-1 میکروسکوپ الکترون روبشی(SEM)…………………………………………43
3-2-2 میکروسکوپ الکترون عبوری (TEM)……………………………………..44
3-2-3 دستگاه پراش اشعه ایکس(XRD)……………………………………45
فصل چهارم ساخت نانو ذرات فریتNi-Znبه روش هم رسوبی
4-1 مقدمه…………………………………………………………………………..49
4-2 ساخت نمونه هایی از نانو ذرات فریت Ni-Znبه روش هم رسوبی…………………51
4-2-1 تهیه نمونه (1)…………………………………………………………………….52
4-2-2 تهیه نمونه (2)…………………………………………………………………….55
4-2-3 تهیه نمونه (3)…………………………………………………………………….57
4-2-4 تهیه نمونه (4)……………………………………………………………….59
4-2-5 تهیه نمونه (5)……………………………………………………………….65
4-3 ساخت نانو ذرات فریت Zn به روش همرسوبی……………………………70
4-4 بیان مشکلات…………………………………………………………………..71
4-5 پیشنهادات……………………………………………………………………….72
4-6 نتیجه گیری…………………………………………………………………..72
1-1 مقدمه
یک نانومتر یک میلیاردم متر (m 9-10) است. این مقدار حدوداً چهار برابر قطر یک اتم هیدروژن است. مکعبی با ابعاد5/2 نانومتر ممکن است حدود 1000 اتم را شامل شود. کوچکترین مدار های تجمعی امروزی با ابعادی در حدود 250 نانومتر در هر لایه به ارتفاع یک اتم ، حدود یک میلیون اتم را در بردارند. در مقایسه یک جسم نانومتری با اندازهای حدود 10 نانومتر، هزار برابرکوچکتر از قطر یک موی انسان است و قطر هر گلبول قرمز خون nm7000 و قطر هر مولکول آب برابر با nm3/0 است [1].
اهمیت مقیاس نانو در این است که در این مقیاس، مواد خواص کاملاً متفاوتی از خود نشان می دهند. دو دلیل عمده برای متمایز شدن خواص مواد در مقیاس نانو وجود دارد، اول افزایش قابل توجه سطح واحد جرم مواد است این ویژگی باعث بهبود استحکام، خواص الکتریکی و افزایش واکنش پذیری مواد می گردد. برخی مواد در مقیاس نانو واکنش پذیر هستند در حالیکه در مقیاس بزرگتر جزو مواد خنثی محسوب می شوند. دلیل دوم آشکار شدن تاثیرات کوانتومی در این مقیاس است، که باعث تغییر در خواص الکتریکی، اپتیکال و مغناطیسی مواد می شود. مواد می توانند یک بعد (پوششها و لایه ها)، دو بعد (نانو سیم ها و نانو تیوبها) و یا سه بعد (نانو ذرات) در مقیاس نانو داشته باشند.
خواص موجی شکل (مکانیک کوانتومی) الکترونهای داخل ماده و اثر متقابل اتمها با یکدیگر از جابجایی مواد در مقیاس نانومتر اثر میپذیرند. با تولید ساختارهایی در مقیاس نانومتر، امکان کنترل خواص ذاتی مواد ازجمله دمای ذوب، خواص مغناطیسی، ظرفیت بار و حتی رنگ مواد بدون تغییر در ترکیب شیمیایی بوجود میآید. استفاده از این پتانسیل به محصولات و تکنولوژیهای جدیدی با کارآیی بالا منتهی میشود که پیش از این میسر نبود. نظام سیستماتیک ماده در مقیاس نانومتری، کلیدی برای سیستمهای بیولوژیکی است [2].
1-2 تعریف نانو تکنولوژی
نانو تکنولوژی محدوده ای از تکنولوژی است که در این محدوده انسان می تواند انواع ترکیبات، آلیاژها، وسایل و ابزارها به طور کلی، سیستم ها و سازه های گوناگون را در مقیاس اتمی و مولکولی و در ابعاد نانومتری (یک میلیاردم متر) طراحی کرده و به مرحله ساخت برساند. روش ساخت در اکثر موارد، بصورت جابجا نمودن اتم ها و مولکل ها و قرار دادن آنها در موقعیت های مناسب می باشد. همچنین می توان نانو تکنولوژی را بر اساس اجزا تشکیل دهنده این نامگذاری، یعنی (نانو) و (تکنولوژی)، تعریف نمود. تکنولوژی در کل به معنی ساخت ابزارهای کاربردی با استفاده از قوانین علمی می باشد؛ همانطور که گفته شد، یک نانومتر به معنی یک میلیاردم متر است. محدوده ابعادی مورد بحث در نانو تکنولوژی عبارت است از ابعادی بین ۱ تا ۱۰۰ نانومترمی باشد. اما این محدوده، بخش زیادی از محدوده ابعادی علوم مختلف، از بلورشناسی با اشعه X گرفته تا فیزیک اتمی و مباحث شیمی و… را شامل می شود، لذا برای مشخص کردن محدوده کاری فرض می کنیم که نانو تکنولوژی تنها شامل ساخت و تولید در محدوده تعریف شده با استفاده از وسایل مخصوص می باشد.
بطور خلاصه نانو تکنولوژی شامل دستکاری مواد در مقیاس اتم ها بوده؛ که شامل قرار دادن اتم ها در جای خاص خود می باشد و اجازه می دهد تا موادی سبکتر، محکم تر، ارزان تر، تمیزتر و با دقت ابعادی بالاتر ساخته شوند. به زبان ساده تر می توان گفت که اجسام و مواد نانومتری، تعداد زیاد ولی قابل شمارشی از اتم ها و مولکول ها را دارا می باشند [3].
درباره نانو تکنولوزی بیشتر بدانیم:
نانوتکنولوژی یکی از جدیدترین و مدرن ترین علومی است که امروزه در جهان مطرح است. عمر این فناوری چیزی کمتر از 10 سال است، ولی محققان پیش بینی می کنند ظرف 5 سال آینده تحولات بسیار عظیمی در این زمینه صورت خواهد گرفت. دکتر سامر می گوید: [3]
((نانوتکنولوژی یکی از فناوری هایی است که نسبت به سال های ابتدایی تحقیقات صنعتی و دانشگاهی آن در مقایسه با سایر علوم بسیار بسیار سریعتر دستخوش تغییرات و پیشرفت های فراوان شده است.))
دکتر تیمپ نیز در کتاب نانو تکنولوژی می نویسد: [3]
((نقشی که نانوتکنولوژی در توسعه پیشرفت بشر ایفا خواهد کرد بسیار بیشتر و تأثیر گذارتر از نقشی است که مارکوپولو و سفرهایش به شرق در توسعه و پیشرفت غرب ایفا نمود. چرا که مارکوپولو ذهنی خلاق و نگاهی دقیق و موشکافانه داشت و تمام آنچه را که در طول سفر تا چین در نقاط مختلف می دید به دقت یادداشت می کرد و الگو گرفتن از همان نوشته ها باعث شروع توسعه و پیشرفت در غرب شد.))
از نظر تاریخی آنچه باعث ظهور نانوتکنولوژی شد، کشف خاصیت نسبت سطح به حجم (A/V) بسیار بالای مواد با ساختار نانو بود. این جرقه ای بود که به کشف خصوصیات منحصر به فرد و شگفت انگیز نانوتکنولوژی منجر شد، چرا که این خاصیت ویژه (یعنی نسبت سطح به حجم زیاد) باعث می شود تا مواد تولید شده با این روش دارای خصوصیاتی از قبیل وزن بسیار کم، مقاومت و سختی بسیار بالا و هزینه های تولید بسیار پائین باشند. درباره این خصوصیت جالب در قسمت ماهیت و ساختار توضیحات بیشتری ارائه شده است.
وقتی گفته می شود نسبت (A/V) در اجسام با مقیاس نانو به مراتب بیشتر از حالت عادی است، یعنی با تغییر در مقیاس اتمی (یا کوچکتر)، اجزاء سازنده ی ماده به گونه ای در کنار هم قرار می گیرند که بیشترین سطح ممکن را ایجاد کنند و چون این حالت در مقیاسی است که اندازه ها بسیار بسیار کوچکند، به همان نسبت افزایش سطح بسیار بسیار زیاد می شود که نتیجه ی آن هم اغلب سبکتر شدن ماده و خواهد بود، چرا که مثلاً وقتی gr 1 گرم از یک جسم معمولی، سطحی برابر2 cm1 دارد(مقیاس ها فرضی اند)، در مقیاس نانو همان gr 1 سطحی به مراتب بیشتر تولید می کند؛ مثلاً 2cm10. پس اگر بتوان در مقیاس نانو به غلط سطح را با عکس جرم متناسب دانست، به این معنی است که وقتی در یک حجم ثابت سطح افزایش یابد، می توان آن را به صورت کاهش جرم بیان کرده و نتیجه گرفت که نسبت m/V کوچک می شود و این هم یعنی کاهش چگالی ماده که نتیجه آن سبک تر شدن ماده خواهد بود. حال به عنوان یک پیش فرض برای اثبات ریاضی فرض کنید لوله ای توپر به طول cm1 در اختیار داریم. این لوله دارای مساحت سطح معینی است، اگر این لوله را به 100 قسمت تقسیم کنیم، آیا سطح موثر آن کاهش می یابد یا افزایش؟ اگر به 109 قسمت تقسیم شود چطور؟
در ابتدای بررسی ویژگی (A/V) توصیه می شود منطق صرف ریاضی را کنار گذاشته و آن را با مقداری استدلال و قوه ی تجسم در آمیزیم. می خواهیم نسبت سطح به حجم در یک استوانه به قطر r و ارتفاع یک واحد (شکل 1-1) را با n استوانه با همان قطر ولی به ارتفاع n/1 (شکل 1-2) مقایسه کنیم (اگر این n استوانه به طول n/1 را در کنار هم قرار دهیم، یک استوانه با طول 1 بدست می آید).
الگوریتم PSO یک الگوریتم جستجوی اجتماعی است که از روی رفتار اجتماعی دستههای پرندگان مدل شده است. در ابتدا این الگوریتم به منظور کشف الگوهای حاکم بر پرواز همزمان پرندگان و تغییر ناگهانی مسیر آنها و تغییر شکل بهینهی دسته به کار گرفته شد . در PSO، ذرات در فضای جستجو جاری میشوند. تغییر مکان ذرات در فضای جستجو تحت تأثیر تجربه و دانش خودشان و همسایگانشان است. بنابراین موقعیت دیگر توده ذرات روی چگونگی جستجوی یک ذره اثر میگذارد . نتیجهی مدلسازی این رفتار اجتماعی فرایند جستجویی است که ذرات به سمت نواحی موفق میل میکنند. ذرات از یکدیگر میآموزند و بر مبنای دانش بدست آمده به سمت بهترین همسایگان خود میروند اساس کار PSO بر این اصل استوار است که در هر لحظه هر ذره مکان خود را در فضای جستجو با توجه به بهترین مکانی که تاکنون در آن قرار گرفته است و بهترین مکانی که در کل همسایگیاش وجود دارد، تنظیم میکند.
کلمات کلیدی : بهینه سازی توده ذرات، هوش جمعی ، اتوماتای یادگیر سلولی ، بهینه سازی جرگه مورچگان، شبکه های عصبی ، الگوریتم PSO ، الگوریتم پی اس او، الگوریتم پرندگان، کاربردی ازPSO در ریاضیات، اتوماتای یادگیر، اتوماتای سلولی یادگیر ، شبکه های عصبی مصنوعی
بخشی از متن اصلی:
-فصل اول: مقدمه1
2- فصل دوم: مروری بر ادبیات و اصول و مبانی نظری4
2-1 مقدمه5
2-2 سیستم جدا ساز ذرات معلق در گازها8
2-2-1 صافی های کیسه ای8
2-2-2 ته نشین کننده های ثقلی8
2-2-3 شوینده ها9
2-2-4 سیکلونها9
2-2-5 نشست دهنده الکتروستاتیک9
2-3 زمینه تاریخی10
2-4 مکانیزمهای انباشت آکوستیک11
2-4-1 فعل و انفعالات اورتوکینتیک11
2-4-2 فعل و انفعالات هیدرودینامیک17
2-4-3 واکنشهای آشفتگی آکوستیک20
2-4-4 روان سازی آکوستیک19
2-4-5 توده آکوستیک23
2-5 مدلهای شبیه سازی فعلی24
2-5-1 مدل وولک24
2-5-2 مدل شو25
2-5-3 مدل تیواری25
2-6 مدل سانگ25
3-فصل سوم: روشها و تجهیزات27
3-1 مقدمه28
3-2 روش شبیه سازی انباشت آکوستیک28
3-2-1 فرضیات انجام شده در مدل سازی28
3-2-2 الگورِیتم مدل سازی29
3-3 سیستم آزمایشگاهی فیلتراسیون آکوستیکی30
3-3-1 سیستم آزمایشگاهی اندازه گیری توزیع اندازه ذرات30
3-3-2 آزمایشات مربوط به دستگاه نشت دهنده آکوستیکی33
3-3-3 مواد مورد استفاده41
3-4 کالیبراسیون وسایل آزمایشگاهی 43
4- فصل چهارم: نتایج و تفسیر آنها45
4-1 مقدمه46
4-2 نتایج آزمایشگاهی47
4-2-1 اندازه گیری توزیع اندازه و غلظت کلی ذرات
خروجی از اگزوز موتورهای دیزلی46
4-3 آزمایشات مربوط به دستگاه نشست دهنده آکوستیکی49
4-3-1 آزمایش بدست آوردن فرکانس های بحرانی49
4-3-2 رسم پروفیل فشار آکوستیکی در طول لوله52
4-3-3 اعمال امواج آکوستیکی بر روی جریان ایروسل55
4-3-3-1 اعمال امواج آکوستیکی برروی ذرات درحالت بدون دبی و ساکن55
4-3-3-2 اعمال امواج بر روی جریان ایروسل62
4-4 بررسی تأثیر عوامل موثر در بازده فیلترهای آکوستیکی
در خروجی موتور های دیزل67
4-4-1 بررسی تأثیر دبی عبوری از محفظه65
4-4-2 بررسی اثر توان اعمالی امواج72
4-4-3 بررسی تاثیر دما و فشار75
4-4-4 تأثیرات فرکانس صدا77
4-4-5 اثر اندازه ذرات77
5- فصل پنجم79
فهرست مراجع83
ضمیمه 185
ضمیمه 288
ضمیمه 395
فهرست نمودارها
شکل 2-1- حجم انباشت آکوستیک12
شکل 2-2- حجم واقعی انباشت آکوستیکی14
شکل 2-3- مکانیزم های آشفتگی20
شکل 2-4- شکل موج سرعت آکوستیک درشدت بالا22
شکل 3-1- دستگاه برخورد دهنده چند مرحله ای31
شکل 3-2- سیستم حذف ذرات بزرگ32
شکل 3-3- دستگاه شمارنده ذرات33
شکل 3-4- منبع امواج آکوستیکی34
شکل 3-5- دستگاه منبع ایجاد سیگنال35
شکل 3-6- دستگاه Amplifier36
شکل 3-7- دستگاه فرکانس متر36
شکل 3-8- بلندگو و horn37
شکل 3-9- صفحه بازتاب کننده امواج و لوله فلزی برای خروج گازها38
شکل 3-10- فشار سنج دیجیتالی38
شکل 3-11- دستگاه تولید کننده ایروسل تک توزیعی39
شکل 3-12- دستگاه مولد ایروسل چند توزیعی40
شکل 3-13- دبی سنج41
شکل 3-14- توزیع اندازه ذرات خروجی از دستگاه تولید کننده ایروسل43
شکل 4-1- توزیع جرمی ذرات کوچکتر از 10 میکرون خروجی از اگزوز موتورهای دیزلی46
شکل 4-2- درصد جرمی توزیع ذرات کوچکتر از 10 میکرون خروجی از اگزوز موتورهای دیزلی46
شکل 4-3- توزیع فشار آکوستیکی در cm10 از بالای لوله49
شکل 4-4- توزیع فشار آکوستیکی در cm17 از بالای لوله49
شکل 4-5- توزیع فشار آکوستیکی در cm150 از بالای لوله50
شکل 4-6- مقایسه نتایج نظری و آزمایشگاهی برای فرکانس 200 (Hz) بر اساس ماکزیمم فشار51
شکل 4-7- مقایسه نتایج نظری و آزمایشگاهی برای فرکانس 650 (Hz) بر اساس مینیمم فشار51
شکل 4-8- مقایسه نتایج نظری و آزمایشگاهی برای فرکانس 830 (Hz) بر اساس ماکزیمم فشار52
شکل 4-9- setup استفاده شده در حالت بدون جریان54
شکل 4-10- تست نشست آکوستیکی برای حالت بدون دبی و فرکانسHz 20056
شکل 4-11- محل نقاطی که در آن ایروسل ها به دیواره چسبیده اند57
شکل 4-12- تست نشست آکوستیکی برای حالت بدون دبی و فرکانسHz 650 58
شکل 4-13- تست نشست آکوستیکی برای حالت بدون دبی و فرکانسHz 830 59
شکل 4-14- setup استفاده شده برای اعمال امواج بر روی جریان (Q=250 L/h61
شکل 4-15- تست نشست آکوستیکی برای حالت Q=250 L/hourو فرکانسHz 830 62
شکل 4-16- setup استفاده شده برای اعمال امواج بر روی جریان (Q=27.8 L/min)63
شکل 4-17- تست نشست آکوستیکی برای حالت Q=27.8 L/minو فرکانسHz 830 64
شکل 4-18- setup استفاده شده برای استفاده از ذرات توزیع اندازه مختلف و استفاده از دستگاه شمارنده ذرات66
شکل 4-19- تاثیر دبی جریان بر بازده فیلتراسیون68
شکل 4-20- تاثیر زمان اعمال جریان بر اندازه ذرات در مدل سازی عددی69
شکل 4-21- بررسی تاثیر زمان اعمال امواج در توزیع اندازه ذرات و مقایسه بین نتایج مدل سازی عددی و نتایج آزمایشگاهی در فرکانس 200 Hz در حالت لوله سر بسته70
شکل 4-22- تاثیر توان الکتریکی امواج بر بازده فیلتراسیون72
شکل 4-23- تاثیر دما در نرخ انباشت آکوستیکی74
شکل 4-24- تاثیر فشار گاز در نرخ انباشت آکوستیکی75
شکل 4-25- تاثیر اندازه ذرات در انباشت آکوستیکی76
فهرست جداول
جدول 4-1- فرکانس های بحرانی48
جدول 4-2- توزیع فشار آکوستیکی در فرکانس های مختلف48
جدول 4-3- بررسی اثر دبی در بازده فیلتراسیون67
جدول 4-4- بررسی اثر توان صوتی در بازده فیلتراسیون7
مقدمه
زیست موجودات زنده به ویژه انسان در معرض هجوم انواع آلودگیها است که آلودگی هوا یکی از مهمترین آنها است. بسیاری از مراکز صنعتی و تولیدات آنها، از عوامل مهم تولید آلاینده های هوا میباشند و از این میان خودروها سهم عمده این آلودگی را در شهرها به عهده دارند.
به موازات رشد و ترقی جوامع که موجب تخریب طبیعت و در نتیجه آلوده کردن بیشتر آن شده است، سازمانهای حفاظت از محیط زیست با وضع قوانینی، سعی در کاهش آلودگیها دارند. برای کاهش آلودگی هوای ناشی از خودروها، دو روش اساسی وجود دارد:
الف: کاهش تولید آلاینده ها
ب: جلوگیری از انتشار آنها در محیط
این فایل به همراه چکیده، فهرست، متن اصلی و منابع با فرمت doc ( قابل ویرایش ) در اختیار شما قرار می گیرد.
تعداد صفحات:115