یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

مقاله درباره گسسته خطی

اختصاصی از یارا فایل مقاله درباره گسسته خطی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 59

 

روشهای تکراری پیش فرض در مسائل گسسته خطی

از منظر معکوس« بایسیان»

دانشکده ریاضیات و مرکزی برای مدل سازی سیستم های متابولیک کامل دانشگاه کمیس غربی کلوند، OH 44106 آمریکا

دریافتی 3 فویه 2005 دریافتی صورت اصلاح شده 24 آگوست 2005

چکیده:

در این مقاله ما با مسائل گسسته خطی که با روشهای تکراری قابل حل می باشد از نظر آماری معکوس بایسیان روبرو خواهیم شد پس از بررسی اجمالی روش های تکراری عمده برای حل مسائل ناقص خطی و برخی نتایج آماری اولیه و روشهای آماری استراتژیهای ترسیمی را مورد تجزیه و تحلیل قرار خواهیم داد. نمونه های محاسبه شده رابط بین این دو را تشریح می کند.

کلمات کلیدی: حل های معکوس( امتحانی) فضای فرعی« کریلا» و روش معکوس« بایسیان»

پیش فرضها مسائل ناقص

(1) مقدمه

استفاده از روشهای تکراری برای حل سیستمهای خطی معادلات روشی انتخابی است هنگامی که ابعاد سیستم آنقدر بزرگ باشد که

فاکتورسازی ماتریس A را غیر عملی سازد یا هنگامی که ماتریس آن بطور صریح مجهول باشد و ما بآسانی بتوانیم حاصلضرب آن را با هر گونه بردار معلومی محاسبه کنیم. هنگامی که سیستم خطی در رابطه با گسستگی مسائل خطی ناقص سمت راست b اطلاعات و فرضیات را مورد بررسی قرار دهد، نقش مسائل متوالی در ماتریس A افزایش می یابد و بنابراین حل مسائل برای یافتن خطا در داده ها مهم و ضروری به نظر می رسد. بمنظور حفظ خطا در نشان دادن صورت b برخی از روشهای بدست آوردن مجهولات بایستی مشخص شود در زمینه روشهای معکوس بمنظور حل مجهولات بواسطه توقف کردن تکرار قبل از همگرایی در حل سیستم های خطی بهتر است به تکرار های ناقص رجوع شود. تجزیه و تحلیل کامل در ویژگی های معلوم کردن به روش CG در معادلات کامل هنگامی که می توان از معیارهای بازدارندگی مناسب استفاده کرد در بخش ] 10 [ قابل بحث می باشد.

در صورتیکهM ماتریس معکوس باشد، براساس ویژگی های طیفی MA همگرایی سریعترین برای روشهای حل تکراری ایجاد می کند. ماتریس M ماتریس شرطی سمت چپ برای سیستم خطی(1) نامیده می شود قابلیت امتحان ماتریس M نشان میدهد که سیستم های (1) و (2) راه حل یکسانی دارند انتخاب یک ماتریس شرطی مقدم M نشان می دهد که چنین ماتریسی نه تنها ویژگی های طیفی ماتریس A را تغییر می دهد بلکه بمنظور حل سیستم های خطی با مضروب ماتریس A بآسانی می توان آن را در کل بردار ضرب کرد. در حقیقت در هنگام حل سیستم 2 به روش تکرار لازم است ضرب ماتریس در بردار را در فرم مورد محاسبه قرار دهیم. سیستم خطی (1) با معادله زیر قابل جانشینی است.

(3)

ماتریس معکوس


دانلود با لینک مستقیم


مقاله درباره گسسته خطی

تحقیق درباره روشهای تکراری پیش فرض در مسائل گسسته خطی

اختصاصی از یارا فایل تحقیق درباره روشهای تکراری پیش فرض در مسائل گسسته خطی دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره روشهای تکراری پیش فرض در مسائل گسسته خطی


تحقیق درباره روشهای تکراری پیش فرض در مسائل گسسته خطی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 40

 

روشهای تکراری پیش فرض در مسائل گسسته خطی

از منظر معکوس« بایسیان»

دانشکده ریاضیات و مرکزی برای مدل سازی سیستم های متابولیک کامل دانشگاه کمیس غربی کلوند، OH 44106 آمریکا

دریافتی 3 فویه 2005 دریافتی صورت اصلاح شده 24 آگوست 2005

چکیده:

در این مقاله ما با مسائل گسسته خطی که با روشهای تکراری قابل حل می باشد از نظر آماری معکوس بایسیان روبرو خواهیم شد پس از بررسی اجمالی روش های تکراری عمده برای حل مسائل ناقص خطی و برخی نتایج آماری اولیه و روشهای آماری استراتژیهای ترسیمی را مورد تجزیه و تحلیل قرار خواهیم داد. نمونه های محاسبه شده رابط بین این دو را تشریح می کند.

کلمات کلیدی: حل های معکوس( امتحانی) فضای فرعی« کریلا» و روش معکوس« بایسیان»

پیش فرضها مسائل ناقص

(1) مقدمه

استفاده از روشهای تکراری برای حل سیستمهای خطی معادلات روشی انتخابی است هنگامی که ابعاد سیستم آنقدر بزرگ باشد که

فاکتورسازی ماتریس A را غیر عملی سازد یا هنگامی که ماتریس آن بطور صریح مجهول باشد و ما بآسانی بتوانیم حاصلضرب آن را با هر گونه بردار معلومی محاسبه کنیم. هنگامی که سیستم خطی در رابطه با گسستگی مسائل خطی ناقص سمت راست b اطلاعات و فرضیات را مورد بررسی قرار دهد، نقش مسائل متوالی در ماتریس A افزایش می یابد و بنابراین حل مسائل برای یافتن خطا در داده ها مهم و ضروری به نظر می رسد. بمنظور حفظ خطا در نشان دادن صورت b برخی از روشهای بدست آوردن مجهولات بایستی مشخص شود در زمینه روشهای معکوس بمنظور حل مجهولات بواسطه توقف کردن تکرار قبل از همگرایی در حل سیستم های خطی بهتر است به تکرار های ناقص رجوع شود. تجزیه و تحلیل کامل در ویژگی های معلوم کردن به روش CG در معادلات کامل هنگامی که می توان از معیارهای بازدارندگی مناسب استفاده کرد در بخش ] 10 [ قابل بحث می باشد.

در صورتیکهM ماتریس معکوس باشد، براساس ویژگی های طیفی MA همگرایی سریعترین برای روشهای حل تکراری ایجاد می کند. ماتریس M ماتریس شرطی سمت چپ برای سیستم خطی(1) نامیده می شود قابلیت امتحان ماتریس M نشان میدهد که سیستم های (1) و (2) راه حل یکسانی دارند انتخاب یک ماتریس شرطی مقدم M نشان می دهد که چنین ماتریسی نه تنها ویژگی های طیفی ماتریس A را تغییر می دهد بلکه بمنظور حل سیستم های خطی با مضروب ماتریس A بآسانی می توان آن را در کل بردار ضرب کرد. در حقیقت در هنگام حل سیستم 2 به روش تکرار لازم است ضرب ماتریس در بردار را در فرم مورد محاسبه قرار دهیم. سیستم خطی (1) با معادله زیر قابل جانشینی است.

(3)

ماتریس معکوس

در صورتی کهM ماتریس معکوس باشد در این مورد M ماتریس شرطی اولیه را ست نامیده می شود و از آنجائیکه هنگام حل سیستم خطی لازم است ضرب ماتریس در بردار را که بصورت نشان داده می شود محاسبه کنیم حل سیستم خطی با ضریب ماتریس A نیز ضروری به نظر می رسد یکی از شرایط برای روشهای حل تکراری در سیستم های خطی را می توان در بخش 19 مشاهده کرد زمانی که سیستم خطی از پراکندگی مسائل ناقص خطی ناشی می شود لازم و ضروری است که این مسائل را حل کرد در عوض تغییر مسیر از شتاب دهنده های همگرا به یک افزایش دهنده کیفیت در حل مسائل محاسبه شده به هیچ روش امکان پذیر نمی باشد. علاوه بر آن سمت و جهتی که معکوس ماتریس بکار می رود بسیار مهم است.در حل تکراری مسائل خطی یک شرط اولیه سمت راست مرتبط با داده های کاملاً منسجم و موجود در مورد حل در حالیکه شرایط لازم الاجرای سمت چپ داده هایی در مورد تمایز ویژگی های آماری ارائه می دهد در حالی که کاربرد این فرضیات در رابطه با روشهای تکراری در سیستم های خطی مشابه و مسائل خطی ناقص بر هم مرتبط است ساخت این پیش فرضیات مناسب کاملاً متغیر بوده و در موارد بعدی برای فهم اینکه چگونه این پیش فرضیات بر کیفیت حل مسائل اثر گذارنده مهم بنظر می رسد.

برخی انواع داده های قبلی در مورد حل ممکن است قابل تغیر به یک تغییرات مناسب در جهت حل های تکراری باشد بعنوان مثال داده هایی در مورد حد های بالایی و پائینی در حل اعداد صحیح بواسطه مراحل ترسیم سازی، پس از


دانلود با لینک مستقیم


تحقیق درباره روشهای تکراری پیش فرض در مسائل گسسته خطی

مقایسه آنالیز ساختمان با فرض دیافراگم صلب و انعطاف پذیر در محدوده خطی و غیرخطی

اختصاصی از یارا فایل مقایسه آنالیز ساختمان با فرض دیافراگم صلب و انعطاف پذیر در محدوده خطی و غیرخطی دانلود با لینک مستقیم و پرسرعت .

مقایسه آنالیز ساختمان با فرض دیافراگم صلب و انعطاف پذیر در محدوده خطی و غیرخطی


مقایسه آنالیز ساختمان با فرض دیافراگم صلب و انعطاف پذیر در محدوده خطی و غیرخطی

• پایان نامه کارشناسی ارشد مهندسی عمران گرایش سازه با عنوان: مقایسه آنالیز ساختمان با فرض دیافراگم صلب و انعطاف پذیر در محدوده خطی و غیرخطی 

• دانشگاه یزد 

• استاد راهنما: دکتر حسینعلی رحیمی 

• پژوهشگر: شهرام ادبی 

• سال انتشار: تیر 1381 

• فرمت فایل: PDF و شامل 257 صفحه

 

چکیــــده:

یکی از مهمترین فرضیاتی که در تحلیل و طراحی ساختمان‌ها در برابر نیروهای جانبی در نظر گرفته می‌شود، فرض دیافراگم صلب است. اهمیت صلبیت سقف‌ها، در توزیع مناسب نیروهای جانبی بین اعضاء باربر جانبی و همچنین کاهش قابل ملاحظه درجات آزادی سازه در محاسبات تحلیلی می‌باشد. صلبیت جانبی دیافراگم به عوامل زیادی از جمله: نوع سیستم سازه، ابعاد سازه، صلبیت و محل قرارگیری عناصر باربر جانبی، سختی قاب‌ها، نوع و ضخامت سقف، تعداد طبقات و ... وابسته است، لذا باید به این فرض مهم توجه بیشتری مبذول داشت.

در این پایان نامه جهت بررسی چگونگی رفتار دال‌های بتنی، مدل‌های زیادی در دو حالت دیافراگم صلب (روش گره مرجع) و دیافراگم واقعی (روش اجزای محدود) در محدوده خطی و غیرخطی، آنالیز و مقایسه شدند. در محدوده خطی، فرض صلبیت در سازه های کم ارتفاع و ساختمان‌های متعارف با سیستم‌های مختلف مقاوم جانبی بررسی شد. همچنین تاثیر نسبت ابعاد پلان مستطیلی، تعداد دهانه‌ها در جهت نیروی زلزله و تعداد طبقات بر صلبیت جانبی دیافراگم در ساختمان‌های متعارف تحقیق شد. علاوه بر این، ضابطه آیین نامه 2800 ایران در تعیین صلبیت و انعطاف پذیری دیافراگم، که با نسبت حداکثر تغییر شکل دیافراگم به تغییر مکان نسبی طبقه معرفی شده، مورد بررسی قرار گرفت. نتایج مطالعات نشان می‌دهد که مقدار این نسبت (عدد 0.5) بزرگ بوده و نمی‌تواند برای سازه‌های بتنی و فولادی با سیستم‌های مختلف مقاوم جانبی، شکل پلان، تعداد طبقات و ... یکسان باشد، بلکه این حد برای حالات مختلف و در سازه‌های مختلف باید به چند حالت تفکیک شود. همچنین این نسبت به تنهایی در تعیین صلبیت دیافراگم کافی بنظر نمی‌رسد. در محدوده غیرخطی، سازه‌های کم ارتفاع و ساختمان‌های متعارف، با سیستم‌های سازه‌ای مختلف آنالیز شدند که نتایج عددی بر این امر دلالت دارند که در آنالیز غیرخطی، دیافراگم‌ها رفتار به مراتب صلبتری را نسبت به آنالیز خطی از خود نشان می‌دهند.

______________________________

** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **

** توجه: در صورت مشکل در باز شدن فایل PDF ، نام فایل را به انگلیسی Rename کنید. **

** درخواست پایان نامه:

با ارسال عنوان پایان نامه درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن پایان نامه در سایت به راحتی اقدام به خرید و دریافت پایان نامه مورد نظر خود نمایید. **


دانلود با لینک مستقیم

دانلود مقاله روشهای تکراری پیش فرض در مسائل گسسته خطی

اختصاصی از یارا فایل دانلود مقاله روشهای تکراری پیش فرض در مسائل گسسته خطی دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله روشهای تکراری پیش فرض در مسائل گسسته خطی


دانلود مقاله روشهای تکراری پیش فرض در مسائل گسسته خطی

 

 

 

 

 



فرمت فایل : word(قابل ویرایش)

تعداد صفحات:43

فهرست مطالب:

چکیده:   ۱
(۱) مقدمه   ۲
۲ – رو شهای تکراری- پیش فرضها و مسائل ناقص   ۶
بردارهای رندوم، شواهد و روشهای اثبات:   ۱۲
معکوسات آماری، فرمول بایز و پیش فرضها   ۱۶
۵- جبرهای حدی و روشهای تکراری ترسیم شده:   ۲۱
پیش فرضهای سمت راست و نقاط حدی   ۲۳
پیش فرضهای سمت چپ و نقص ها   ۲۷
۸- مثالهای محاسبه شده   ۲۸
۹- نتایج و کاربردهای آینده:   ۳۷
فهرست منابع   ۳۸

 

 

چکیده:

در این مقاله ما با مسائل گسسته خطی که با روشهای تکراری قابل حل می باشد از نظر آماری معکوس بایسیان روبرو خواهیم شد پس از بررسی اجمالی روش های تکراری عمده برای حل مسائل ناقص خطی و برخی نتایج آماری اولیه و روشهای آماری استراتژیهای ترسیمی را مورد تجزیه و تحلیل قرار خواهیم داد. نمونه های محاسبه شده رابط بین این دو را تشریح می کند.

کلمات کلیدی: حل های معکوس( امتحانی) فضای فرعی« کریلا» و روش معکوس« بایسیان»

پیش فرضها مسائل ناقص

 

 

(1) مقدمه

استفاده از روشهای تکراری برای حل سیستمهای خطی معادلات روشی انتخابی است هنگامی که ابعاد سیستم آنقدر بزرگ باشد که                   

فاکتورسازی ماتریس A را غیر عملی سازد یا هنگامی که ماتریس آن بطور صریح مجهول باشد و ما بآسانی بتوانیم حاصلضرب آن را با هر گونه بردار معلومی محاسبه کنیم. هنگامی که سیستم خطی در رابطه با گسستگی مسائل خطی ناقص سمت راست b اطلاعات و فرضیات را مورد بررسی قرار دهد، نقش مسائل متوالی در ماتریس A افزایش می یابد و بنابراین حل مسائل برای یافتن خطا در داده ها مهم و ضروری به نظر می رسد. بمنظور حفظ خطا در نشان دادن صورت b برخی از روشهای بدست آوردن مجهولات بایستی مشخص شود در زمینه روشهای معکوس بمنظور حل مجهولات بواسطه توقف کردن تکرار قبل از همگرایی در حل سیستم های خطی بهتر است به تکرار های ناقص رجوع شود. تجزیه و تحلیل کامل در ویژگی های معلوم کردن به روش CG در معادلات کامل هنگامی که می توان از معیارهای بازدارندگی مناسب استفاده کرد در بخش ] 10 [ قابل بحث می باشد.

در صورتیکهM ماتریس معکوس باشد، براساس ویژگی های طیفی MA همگرایی سریعترین برای روشهای حل تکراری ایجاد می کند. ماتریس M ماتریس شرطی سمت چپ برای سیستم خطی(1) نامیده می شود قابلیت امتحان ماتریس M نشان میدهد که سیستم های (1) و (2) راه حل یکسانی دارند انتخاب یک ماتریس شرطی مقدم M نشان می دهد که چنین ماتریسی نه تنها ویژگی های طیفی ماتریس A را تغییر می دهد بلکه بمنظور حل سیستم های خطی با مضروب ماتریس A بآسانی می توان آن را در کل بردار ضرب کرد. در حقیقت در هنگام حل سیستم 2 به روش تکرار لازم است ضرب ماتریس در بردار را در فرم مورد محاسبه قرار دهیم. سیستم خطی (1) با معادله زیر قابل جانشینی است.

                                                                             (3)

ماتریس معکوس

در صورتی کهM ماتریس معکوس باشد در این مورد M ماتریس شرطی اولیه را ست نامیده می شود و از آنجائیکه هنگام حل سیستم خطی لازم است ضرب ماتریس در بردار را که بصورت نشان داده می شود محاسبه کنیم حل سیستم خطی با ضریب ماتریس A نیز ضروری به نظر می رسد یکی از شرایط برای روشهای حل تکراری در سیستم های خطی را می توان در بخش 19 مشاهده کرد زمانی که سیستم خطی از پراکندگی مسائل ناقص خطی ناشی می شود لازم و ضروری است که این مسائل را حل کرد در عوض تغییر مسیر از شتاب دهنده های همگرا به یک افزایش دهنده کیفیت در حل مسائل محاسبه شده به هیچ روش امکان پذیر نمی باشد. علاوه بر آن سمت و جهتی که معکوس ماتریس بکار می رود بسیار مهم است.در حل تکراری مسائل خطی یک شرط اولیه سمت راست مرتبط با داده های کاملاً منسجم و موجود در مورد حل در حالیکه شرایط لازم الاجرای سمت چپ داده هایی در مورد تمایز ویژگی های آماری ارائه می دهد در حالی که کاربرد این فرضیات در رابطه با روشهای تکراری در سیستم های خطی مشابه و مسائل خطی ناقص بر هم مرتبط است ساخت این پیش فرضیات مناسب کاملاً متغیر بوده و در موارد بعدی برای فهم اینکه چگونه این پیش فرضیات بر کیفیت حل مسائل اثر گذارنده مهم بنظر می رسد.

برخی انواع داده های قبلی در مورد حل ممکن است قابل تغیر به یک تغییرات مناسب در جهت حل های تکراری باشد بعنوان مثال داده هایی در مورد حد های بالایی و پائینی در حل اعداد صحیح بواسطه مراحل ترسیم سازی، پس از ترسیم روش تقریبی روش های تکراری با استفاده از روش های حل ترسیمی بعنوان یک سری حدسیات اولیه جدید آغاز می شود رجوع شود به] 3 [ فرایند ادامه می یابد تا یک معیاری برای توقف حاصل شود این امر باعث می شود روشهای مؤثر محاسباتی نسبت به مدل های استاندارد تأثیر بهتری داشته باشد.

این مقاله به صورت زیر تنظیم شده است در بخش 2 ما مختصراً برخی از تحقیقات در زمینه روشهای تکراری کریلا و را برای مسائل ناقس و گسسته خطی مورد بررسی قرار می دهیم بخس 3 یک بررسی اجمالی در مورد نتایج آماری مورد نیاز می باشد بخش 4 رابطه بین پیش فرضیات و مسائل معکوس آماری« بایسیان» را با اطلاعات آماری در زمینه حل و نقص را عنوان میکند بخش 5 چگونگی استفاده از استراتژیهای ترسیمی را باری فائق آمدن بر حدهای بالایی و پائینی در حل مسائل نشان میدهد. در بخش 6 ما دیدگاهی را مورد چگونگی انتخاب حدهای مناسب برای یک مجموعه مسائل خطی ناقص هنگامی که راه حل هایی برای حل حدها بخوبی شناخته نشده باشد و چگونگی فائق آمدن بر آن ها را با پیش فرضیات سمت راست مورد بررسی قرار می دهیم. رابطه بین پیش فرضیات سمت چپ و ویژگی های آماری در بخش 7 می آید بخش 8 نمونه های حل شده ای از عملکرد پیش فرض ها و استراتژی های ترسیمی را در بخشهای پیشین ارائه می دهد. نتایج و رئوس مطالب در بخش 9 موجود است.


دانلود با لینک مستقیم