لینک پرداخت و دانلود در "پایین مطلب"
فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات:26
به نام خدا
محاسبه انتگرال
مشتق و انتگرال دو مفهوم فردی از محاسبه هستند. بکس که ممکن است مشتق را تعریف کند ، از یک تابع شیب منحنی رسم شده با آن تابع است.
تعریف تشابه انتگرال منطقه زیر یک شیب تابع است. بنابراین انتگرالها مفیدترین ابزار برای پیدا کردن منطقه زیر منحنی هستند.
آنها برای تعیین ارزش سود انتظار و متغیر پایه در توزیع احتمال استمراری مفید هستند همچنین اپراتورها برای جمع تعدادی از چیزهای قابل شمارش استفاده میشود.
انتگرال برای اجرای جمعی از چیزهای نامحدود غیر قابل شمارش استفاده میشوند.
محاسبات انتگرال همچنین برای آنالیز رفتار متغیر در طول زمان مفید است (مانند cash flow)
یک تابع شناخته شده عنوان معادله مختلف ممکن است سرعت تغییرات پایه را در محول زمان تعریف کند.
به طور مثال ممکن است تغییر در ارزش یا سود سرمایه گذاری را در طی زمان تعریف کند هنگامی که ارزش واقعی را فراهم میکند.
انتگرال بسیاری از توابع میتواند با استفاده از مراحل ضد مشتق گیری تعریف شود.
هنگامی که مراحل مشتق گیری است. اگر تابعی از x باشد که مشتق آن برابر باشد پس با ضد مشتق گفته میشود یا انتگرال که اینگونه نوشته میشود.
علامت انتگرال برای مشخص کردن ضد مشتق از انتگرال استفاده میشود.
انتگرال نامحدود با تعریف میشود.
ادامه دلالت میکند با معادله 9.1
تابع را در نظر بگیرید. تابع برای مشتق است.
ضد مشتق است. ضد مشتق است.
بنابراین مشتق تابع اصلی است. imply که ضد مشتق است. ثابت انتگرال x باید شامل ضد مشتق باشد بنابراین همه توابع میتوانند ضد مشتق باشند. برای محاسبات ضد مشتق بسیار مهم است که با هر کدام از احتمال ارزش k ثابت منطبق گردد.
مقاله محاسبه انتگرال