یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

مقاله کاربرد روش L1 – تقریب در معادلات انتگرال تکین

اختصاصی از یارا فایل مقاله کاربرد روش L1 – تقریب در معادلات انتگرال تکین دانلود با لینک مستقیم و پر سرعت .

مقاله کاربرد روش L1 – تقریب در معادلات انتگرال تکین


مقاله کاربرد روش L1 – تقریب در معادلات انتگرال تکین

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:21

- کاربرد روش L1 – تقریب در معادلات انتگرال تکین

1-  مقدمه: معادلات انتگرال را می‌توان با استفاده از فن LP – تقریب (به ویژه L1 تقریب) به طور موثری حل کرد. در این متن فن کلی را مورد بحث قرار می‌دهیم و سپس آن را با حل چند معادله انتگرال مختلف توضیح می‌دهیم. علاوه برامتیازات دیگر، این روش به طور موفقیت آمیزی در مورد معادلات انتگرال تکین و همین طور معادلات انتگرال قویاً تکین (نظیر انتگرال های آدامار یا متناهی – قسمت) تعمیم داده شده و به کار رفته است. در بحث حاضر، مروری بر این مطالعه ارائه می‌شود.

2-   مقدمات ریاضی :

به طور کلی هدف این متن عبارت است از کاربرد فن LP- تقریب در حل یک معادله انتگرال فردهولم (خطی یا غیر خطی) نوع اول یا دوم به صورت

 

در معادلة بالا تابع هدایتگر  و هسته K توابعی معلوم اند، در حالی که تابع مجهول است که باید آن را بیابیم پارامتر  نیز معلوم است. مساله کلی LP- تقریب پیوسته را می‌توان به صورت زیر فرمول بندی کرد:

تابع f معین روی یک بازة حقیقی مانند x همراه با یک تابع تقریب مانند F(A)، که به متغیر n پارامتری A=(a1 , …,an) در Rn وابسته است، مفروض اند.

در این صورت مساله LP- تقریب پیوسته به این معنی است که باید برداری مانند  به گونه ای بیابیم که به ازای هر رابطة :

 

برقرار باشد.

جنبة اصلی مساله که باید مورد بحث واقع شود فرمول بندی مجدد مساله معادله انتگرال به صورت یک مساله LP- تقریب است. برای این منظور، فرض کنیم بتوان تابع جواب را با تابع F(A)، که ممکن است خطی یا غیر خطی باشد،


دانلود با لینک مستقیم


مقاله کاربرد روش L1 – تقریب در معادلات انتگرال تکین

مقاله دیفرانسیل انتگرال

اختصاصی از یارا فایل مقاله دیفرانسیل انتگرال دانلود با لینک مستقیم و پر سرعت .

مقاله دیفرانسیل انتگرال


مقاله دیفرانسیل انتگرال

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:14

-آشنایی

حساب دیفرانسیل و انتگرال تاحدود زیادی عبارت است از مطالعه میزانهای تغییر کمیات. لازم است که ببینیم وقتی شناسه x به عددی نزدیک می‌شود،‌ رفتار مقدار f(x) تابع f چگونه است. این امر ما را به ایده حد می‌رساند.

مثال: تابع f را با فرمول

 

وقتی این فرمول معنی دارد، تعریف کنید. لذا f به ازای هر x که مخرج x-3 صفر نباشد، یعنی  ، تعریف شده است وقتی x به 3 نزدیک شود،‌مقدار f(x) چه خواهد شد؟  به 9 و در نتیجه  نزدیک می‌شود. به علاوه x-3 به 0 نزدیک می‌گردد. چون صورت و مخرج هر دو به 0 نزدیک می‌شوند.

با این حال اگر صورت را تجزیه کنیم، می‌بینیم که

 

چون با نزدیک 3 شدن x ، x+3 به 6 نزدیک می‌شود، تابع ما با نزدیک 3 شدن به x به 6 نزدیک خواهد شد. شیوه ریاضی بیان این امر آن است که بنویسیم.

 

این عبارت خوانده می‌شود: حد  وقتی x به 3 نزدیک شود 6 است.

توجه کنید که وقتی x به عددی غیر از 3 نزدیک شود مشکلی نداریم. مثلا وقتی x به 4 نزدیک شود،‌ به 7 و 3-x به 1 نزدیک خواهد شد، لذا،


دانلود با لینک مستقیم


مقاله دیفرانسیل انتگرال

مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

اختصاصی از یارا فایل مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن دانلود با لینک مستقیم و پر سرعت .

مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن


مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

لینک پرداخت و دانلود در "پایین مطلب"

 

فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات:63

کاربرد تبدیل لاپالس در تحلیل مدار

16-1- مقدمه

تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است. نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد. دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند. بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند. اما در روشهای کلاسیک حل معادلات دیفرانسیل شرایط اولیه زمانی وارد می شوند که می خواهیم ضرایب مجهول را محاسبه کنیم.

هدف ما در این فصل ایجاد روشی منظم برای یافتن رفتار گذرای مدارها به کمک تبدیل لاپلاس است. روش پنج مرحله ای بر شمرده شده در بخش 15-7 اساس این بحث است. اولین گام در استفاده موثر از روش تبدیل لاپلاس از بین بردن ضرورت نوشتن معادلات انتگرالی –دیفرانسیلی توصیف کنندة مدار است. برای این منظور باید مدار هم از مدار را در حوزةs به دست آوریم. این امر به ما امکان می دهد که مداری بسازیم که مستقیماً در حوزة تحلیل شود بعد از فرمولبندی مدار در حوزة sمی توان از روشهای تحلیلی بدست آمده (نظیر روشهای ولتاژ گره، جریان خانه و ساده سازی مدار) استفاده کرد و معادلات جبری توصیف کنندة مدار را نوشت. از حل این معادلات جبری، جریانها و ولتاژهای مجهول به صورت توابعی گویا به دست می آیند که تبدیل عکس آنها را به کمک تجزیه به کسرهای ساده به دست می اوریم. سرانجام روابط حوزه زمانی را می آزماییم تا مطمئن شویم که جوابهای به دست امده با شرایط اولیة مفروض و مقادیر نهایی معلوم سازگارند.

در بخش 16-2- هم از عناصر را در حوزة s به دست می آوریم. در شروع تحلیل مدارهای حوزة s باید دانست که بعد ولتاژ تبدیل شده ولت ثانیه و بعد جریان تبدیل شده آمپر ثانیه است. بعد نسبت ولتاژ به جریان در حوزة s ولت بر آمپر است و بنابراین در حوزة s یکای پاگیرایی ( امپدانس) اهم و یکای گذارایی ( ادمیتانس) زیمنس یا مو است.

16-2- عناصر مدار در حوزة s

روش به دست آوردن مدار هم از عناصر مدار در حوزة s ساده است. نخست رابطة ولتاژ و جریان عنصر در پایانه هایش را در حوزه زمان می نویسم. سپس از این معادله تبدیل لاپلاس می گیریم به این طریق رابطة جبری میان ولتاژ و جریان در حوزة s به دست می آید. سرانجام مدلی می سازیم که رابطة میان جریان و ولتاژ در حوزة s را برآورد سازد. در تمام این مراحل قرارداد علامت منفی را به کار می بریم.

نخست از مقاومت شروع میکنیم، بنا به قانون اهم داریم

(16-1)                              

از آنجا که R ثابت است، تبدیل لاپلاس معادلة (16-1) چنین است .

(16-2)                           V=RI

که در آن

 

بنا به معادلة (16-2) مدار هم ارز یک مقاومت در حوزة s مقاومتی برابر R اهم است که جریان آن Iآمپر – ثانیه و ولتاژ آن V ولت –ثانیه است.

مدارهای مقاومت در حوزة زمان و حوزه بسامد در شکل 16-1 دیده می شود به یاد داشته باشید که در تبدیل مقاومت از حوزة زمان به حوزة بسامد تغییری در آن ایجاد نمی شود.

القاگری با جریان اولیة Io در شکل 16-2 آمده است. معادلة ولتاژ و جریان آن در حوزة زمان چنین است.

 

 

 

شکل 16-1- مقاومت در الف) حوزة زمان ،ب) حوزة بسامد.

   

 

 

 

 

 

شکل 16-2- القا گر L هانری با جریان اولیه Io آمپر.

در حوزة زمان چنین است

(16-3)                   

پس از تبدیل لاپلاس گرفتن از معادلة (16-3) داریم

(16-4)                   

                         

به کمک دو مدار مختلف می توان معادلة (16-4) را تحقق بخشید. مدار هم از اول مداری است متشکل از یک امپدانس sL اهمی که با یک منبع ولتاژ مستقل ‎LIo ولت ثانیه ای متوالی است. این مدار در شکل 16-3 دیده می شود در بررسی مدار هم ارز حوزة بسامدی شکل 16-3 توجه کنید که جهت ولتاژ منبع LIo بر مبنای علامت منفی مجود در معادله (16-4) است توجه به این نکته نیز اهمیت دارد که Io علامت جبری مخصوص به خود را دارد. یعنی چنانچه مقدار اولیة I خلاف جهت مبنای I باشد آنگاه Io مقدار منفی دارد.

مدار هم از دیگری که معادله (16-4) را برآورده، می سازد متشکل است از یک امپدانس

 

 

 

 

 

 

SL اهمی که با یک منبع جریان مستقل Io/s آمپر ثانیه ای موازی است. این مدار هم ارز در شکل 16-4 آمده است.

برای به دست آوردن مدار هم از شکل 16-4 راههای مختلفی موجود است. یکی از این راهها حل معادلة (16-4) نسبت به جریان I و ساخت مداری بر حسب معادلة به دست آمده بنابراین

(16-5)               

به سادگی مشاهده می شود که مدار شکل 16-4 معادلة (16-5) را برآورده می سازد دو راه دیگر به دست آوردن مدار شکل 16-4 عبارت اند از (1) به دست اوردن هم از نور تن مدار شکل (16-3، (2) به دست آوردن  جریان القا گر بر حسب ولتاژ آن و گرفتن تبدیل لاپلاس از معادلة به دست آمده این دو روش به صورت تمرین در مسائل 16-1 و 16-2 به خواننده واگذار می شود.

قابل توجه است که هرگاه انرژی اولیة ذخیره شده در القا گر صفر باشد یعنی اگر Io=o مدار هم ارز القا گر در حوزة بسامد به صورت القا گری با امپدانس sL اهم در می آید. این مدار در شکل 16-5 آمده است.

برای خازنهای با بار اولیه نیز دو مدار هم ارز در حوزة s وجود دارد. خازنی که با بار اولیة Vo ولت در شکل 16-6 دیده می شود. جریان خازن چنین است.

 

 

 

 

 

 

شکل 16-5 مدار خوزة بسامدی القاگری با جریان اولیه صفر.

 

 

 

 

شکل 16-6- خازنی C فارادی که تاVo ولت بار دار شده است.

(16-6)                   

پس از تبدیل معادلة (16-6) داریم

 

یا

(16-7)                    I=sCV-CVo

از معادله فوق دیده می شود که جریان I در حوزة بسامد از دو جریان شاخه ای تشکیل می شود یکی از شاخه ها از یک گذارایی به مقدار sc مو و دیگری از یک منبع جریان مستقل CVo آمپر ثانیه ای تشکیل  می شود. این مدار هم ارز در شکل 16-7 آمده است.

از حل معادلة (16-7) نسبت به V می توان مدار هم ارز متوالی خازن باردار را به دست آورد. بنابراین داریم

(16-8)                   

مداری که در شکل 16-8 آمده است تحقق معادلة (16-8) است.

در مدارهای هم ارز شکلهای 16-7 و 16-8، علامت جبری خود را دارد. یعنی اگر جهت  خلاف جهت مبنای  باشد  مقداری منفی خواهد بود. اگر ولتاژ اولیه خازن صفر باشد مدارهای هم ارز ساده می شوند و تنها امپدانس sc/1 اهمی باقی می ماند که در شکل 16-9 آمده است.

مدارهای حوزه بسامدی به دست آمده در این بخش در جدول 16-1 آمده اند. کاربرد این مدارها در بخش 16-4 نشان داده خواهد شد.

 

 

 

 

 

 

 

 

 

 

جدول 1016 مدارهای هم ارز در حوزة s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

شکل 16-9 مدار حوزة بسامدی خازنی با ولتاژ اولیة صفر

16-3- تحلیل مدار در حوزة s

پیش از بررسی مدارها در حوزة s به ذکر چند نکته می پردازیم که اساس تمام کارهای بعدی ماست.

نخست میدانیم که چنانچه در القا گر و خازنها انرژی اولیه نداشته باشیم رابطة ولتاژ و جریان آنها چنین است.

(16-9)            V=ZI

که در آن Z امپدانس (پاگیرایی) عنصر در حوزة s است. به این ترتیب امپدانس مقاومت R اهم، امپدانس القا گر sL اهم، و امپدانس خازن sC/1 اهم است. نکته ای که در معادلة (16-9) آمده است، در شکلهای 16-1(ب)، 16-5، و 16-9 مشخص شده است. گاه معادلة (16-9) را قانون اهم در حوزة s می نامند.

عکس پاگیرایی، گذارایی، گذاراییها در حوزة s دقیقاً همان قواعد ترکیب آنها در حوزة فازبرداری است. در تحلیل  حوزة بسامدی می توان از ساده کردنهای متوالی و موازی و تبدیلهای ستاره – مثلث استفاده کرد.

نکتة مهم دیگر این است که قوانین کبرشهف را می توان برای جریانها و ولتاژهای حوزة s به کار برد.


دانلود با لینک مستقیم


مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

مقاله محاسبه انتگرال

اختصاصی از یارا فایل مقاله محاسبه انتگرال دانلود با لینک مستقیم و پر سرعت .

مقاله محاسبه انتگرال


مقاله محاسبه انتگرال

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:26

به نام خدا

محاسبه انتگرال

مشتق و انتگرال دو مفهوم فردی از محاسبه هستند. بکس که ممکن است مشتق را تعریف کند ، از یک تابع  شیب منحنی رسم شده با آن تابع است.

تعریف تشابه انتگرال  منطقه  زیر یک شیب تابع  است. بنابراین انتگرال‌ها مفیدترین ابزار برای پیدا کردن منطقه زیر منحنی هستند.

آنها برای تعیین ارزش سود انتظار و متغیر پایه در توزیع احتمال استمراری مفید هستند همچنین اپراتورها برای جمع تعدادی از چیزهای قابل شمارش استفاده می‌شود.

انتگرال برای اجرای جمعی از چیزهای نامحدود غیر قابل شمارش استفاده می‌شوند.

محاسبات انتگرال همچنین برای آنالیز رفتار متغیر در طول زمان مفید است (مانند cash flow)

یک تابع  شناخته شده عنوان معادله مختلف ممکن است سرعت تغییرات پایه  را در محول زمان تعریف کند.

به طور مثال  ممکن است تغییر در ارزش یا سود سرمایه گذاری را در طی زمان تعریف کند هنگامی که  ارزش واقعی را فراهم می‌کند.

انتگرال بسیاری از توابع می‌تواند با استفاده از مراحل ضد مشتق گیری تعریف شود.

هنگامی که مراحل مشتق گیری است. اگر  تابعی از x باشد که مشتق آن برابر  باشد پس با  ضد مشتق گفته می‌شود یا انتگرال  که اینگونه نوشته می‌شود.

 

علامت انتگرال برای مشخص کردن ضد مشتق از انتگرال  استفاده می‌شود.

انتگرال نامحدود با  تعریف می‌شود.

ادامه دلالت می‌کند با معادله 9.1

تابع  را در نظر بگیرید. تابع برای  مشتق  است.

ضد مشتق  است. ضد مشتق  است.

بنابراین  مشتق  تابع اصلی  است. imply که  ضد مشتق  است. ثابت انتگرال x باید شامل ضد مشتق باشد بنابراین همه توابع می‌توانند ضد مشتق  باشند.  برای محاسبات ضد مشتق بسیار مهم است که با هر کدام از احتمال ارزش k ثابت منطبق گردد.


دانلود با لینک مستقیم


مقاله محاسبه انتگرال

کاربرد روش L1 تقریب در معادلات انتگرال تکین

اختصاصی از یارا فایل کاربرد روش L1 تقریب در معادلات انتگرال تکین دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 21

 

- کاربرد روش L1 – تقریب در معادلات انتگرال تکین

1- مقدمه: معادلات انتگرال را می‌توان با استفاده از فن LP – تقریب (به ویژه L1 تقریب) به طور موثری حل کرد. در این متن فن کلی را مورد بحث قرار می‌دهیم و سپس آن را با حل چند معادله انتگرال مختلف توضیح می‌دهیم. علاوه برامتیازات دیگر، این روش به طور موفقیت آمیزی در مورد معادلات انتگرال تکین و همین طور معادلات انتگرال قویاً تکین (نظیر انتگرال های آدامار یا متناهی – قسمت) تعمیم داده شده و به کار رفته است. در بحث حاضر، مروری بر این مطالعه ارائه می‌شود.

2- مقدمات ریاضی :

به طور کلی هدف این متن عبارت است از کاربرد فن LP- تقریب در حل یک معادله انتگرال فردهولم (خطی یا غیر خطی) نوع اول یا دوم به صورت

 

در معادلة بالا تابع هدایتگر و هسته K توابعی معلوم اند، در حالی که تابع مجهول است که باید آن را بیابیم پارامتر نیز معلوم است. مساله کلی LP- تقریب پیوسته را می‌توان به صورت زیر فرمول بندی کرد:

تابع f معین روی یک بازة حقیقی مانند x همراه با یک تابع تقریب مانند F(A)، که به متغیر n پارامتری A=(a1 , …,an) در Rn وابسته است، مفروض اند.

در این صورت مساله LP- تقریب پیوسته به این معنی است که باید برداری مانند به گونه ای بیابیم که به ازای هر رابطة :

 

برقرار باشد.

جنبة اصلی مساله که باید مورد بحث واقع شود فرمول بندی مجدد مساله معادله انتگرال به صورت یک مساله LP- تقریب است. برای این منظور، فرض کنیم بتوان تابع جواب را با تابع F(A)، که ممکن است خطی یا غیر خطی باشد، تقریب زد. اگر این تقریب را در معادله انتگرال بگذاریم، رابطة زیر به دست می‌آید:

 

در آن صورت مساله تقریب را می‌توان بر حسب LP- نرم به صورت:

 

بیان کرد که در آن F(A,x) نسبت به A روی Rn و نسبت به x روی [a,b] تعریف شده است. توجه داشته باشید که می‌توان عبارت

 

را تابعی مانند تلقی کنیم که فقط به A بستگی دارد. پس می‌توان مسأله تقریب را به عنوان یک مسأله مینیمم سازی غیر مقید وابسته به n متغیر an,...,a1 در نظر گرفت. بنابراین، J فقط باید نسبت به این متغیرها مینیمم شود. در نتیجه، با حل مسأله مینیمم سازی بالا امکان حل تقریبی معادله انتگرال وجود دارد.

برای مطالعة درباره جزئیات این فن (و از جمله آنالیز ریاضی) مراجع [19] , [18] تالیف De Klerk را ببینید.

در این مرحله دو تفسیرزیر ضروری اند:

مقادیر مخلتف P را می‌توان مورد استفاده قرار داد. برای مثال به ازای P=1 مسأله منجر می‌شود به مسأله کمترین قدر مطلق و به ازای P=2 مسأله منجر می‌شود به مسألة کمترین مربعات. دلیلی وجودندارد که مقادیر مثبت دیگر P را در نظر نگیریم. حالت P=2 را بیشتر می شناسیم، در حالی که حالت P=1 کمتر آشناست. بنابراین احساس می‌شد که این حالت باید حاوی چالش های عددی جالبی (در رابطه با قدر مطلقی که در انتگرالده ایجاد می شود) باشد. توجه داشته باشید که خطی یا غیر خطی بودن انتگرالده بالا نسبت به A بستگی به تابع تقریب F(A) و هسته K دارد. در روش عددی ای که در اینجا مورد بحث قرار می‌گیرد تمایز خاصی بین خطی یا غیر خطی بودن قائل نمی‌شویم.


دانلود با لینک مستقیم


کاربرد روش L1 تقریب در معادلات انتگرال تکین