یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

پاورپوینت هندسه ی خورشیدی سیستم های فعال خورشیدی

اختصاصی از یارا فایل پاورپوینت هندسه ی خورشیدی سیستم های فعال خورشیدی دانلود با لینک مستقیم و پر سرعت .

 

دسته بندی : پاورپوینت 

نوع فایل:  ppt _ pptx

( قابلیت ویرایش )

 


 قسمتی از محتوی متن پاورپوینت : 

 

تعداد اسلاید : 32 صفحه

هندسه ی خورشیدیسیستم های فعال خورشیدی خورشید خورشید مهمترین عامل در زندگی انسان ها و ساختمان ها و تنها منبع انرژی های تجدید پذیر در مرکز منظومه شمسی واقع شده است. انرژی خورشید در شبانه روز 24 ساعت و در 365 روز سال به صورت امواج الکترو مگنتیک به زمین می تابد . سه صورت استفاده از انرژی خورشید : 1- سیستم غیر فعال 2- سیستم فعال 3-روشنایی درجه حرارت سطح خورشید حدود 6000 درجه کلوین است .
چرا تنها قسمت کوچکی از این انرژی به زمین می رسد؟
اولا : این انرژی در تمام جهات منتشر شده و یک قسمت جزئی از آن بعد از طی فاصله بین زمین وخورشید به سطح خارج از اتمسفر می رسد . مقدار انرژی که به واحد سطح زمین در واحد زمان می رسد به نام شدت تابش خورشیدی ( واحد : وات بر متر مربع ) نامیده می شود . شدت تابش در خارج از جو زمین تقریبا ثابت است و معادل 1367 وات بر متر مربع است . ثانیا با گردش زمین حول محورش هر وسیله برای دریافت انرژی بر روی زمین صرفا در روز ( تقریبا نصف شبانه روز ) انرژی خورشید را دریافت می کند . ثالثا : از امواج رسیده به خارج جو زمین ؛ تا رسیدن آنها به سطح زمین درصد دیگری از آن تلف می شود .
( گردش وضعی زمین و حرکت انتقالی بر روی یک مدار بیضوی ؛ و وجود اتمسفر زمین )به علاوه شرایط آب و هوایی می تواند انرژی رسیده را تا حد زیادی کاهش دهد . اثر جو زمین کاهش 30 درصدی در روز صاف کاهش 90 درصدی در یک روز کاملا ابری تابش ورودی : مستقیم پراکنده اثر کسینوس مربوط به کاهش شدت نور .
اگر صفحه بر شعاع تابش عمود نباشد شدت تابش رسیده به آن به اندازه ی کسینوس زاویه بین خط عمود بر صفحه و امتداد شعاع مرکزی تابش خورشید کاهش نماید فاصله ی خورشید نسبت به زمین زمین به دور خورشید بر روی یک مدار بیضی می گردد . فاصله بین زمین و خورشید به حدی تغییر می کند که موجب تغیییر 7 درصدی در شدت تابش آفتاب بر روی زمین در دوره ای شش ماهه می شود . فاصله خورشید از زمین نقطه اوج : دور ترین فاصله زمین تا خورشید : اول تیر ماه یا اول تابستان نیمکره شمالی نقطه حضیض : کوتاه ترین فاصله بین زمین و خورشید : اول دی ماه یا زمستان نیمکره شمالی تغییر فصول فصول به دلیل انحراف 23درجه و 27 دقیقه ی بین محور چرخش زمین و محور عمود بر صفحه ی مدار آن ایجاد می شود . تغییر فصول و ماههای قرینه زاویه ی تابش جهت تابش SUN CHART مسیر حرکت خورشید و نقاله خورشیدی مسیر حرکت خورشید انتقال نقاله بر روی مسیر حرکت خورشید گرد آوری انرژی خورشید ( با استفاده از سیستم های غیر فعال ) دریافت مستقیم : پنجره آفتابی ، پنجره ی سقفی دریافت غیر مستقیم : دیوار ترومب ، گلخانه ، حوضچه ی روی بام دریافت مجزا : ترموسیفون پنجره ی آفتابی : یک پنجره ی با سطح زیاد رو به خورشید فضا به یک جرم حرارتی نیازمند است استفاده از عایق متحرک به منظورکاهش اتلاف شبانه گرد آوری انرژی خورشید ( با استفاده از سیستم های غیر فعال ) پنجره ی سقفی: گرد آوری انرژی خورشید ( با استفاده از سیستم های غیر فعال ) دیوار ترومب گرد آوری انرژی خورشید ( با استفاده از سیستم های غیر فعال ) سیستم گلخانه ای گرد آوری انرژی خورشید ( با استفاده از سیستم های غیر فعال ) بام حوضخانه ای گرد آوری انرژی خورشید ( با استفاده از سیستم های غیر فعال

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  توجه فرمایید.

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف فروشگاه پاورپوینت کمک به سیستم آموزشی و رفاه دانشجویان و علم آموزان میهن عزیزمان میباشد. 


 

دانلود فایل  پرداخت آنلاین 


دانلود با لینک مستقیم


پاورپوینت هندسه ی خورشیدی سیستم های فعال خورشیدی

تحقیق درباره هندسه در راز و رمزهای دینی

اختصاصی از یارا فایل تحقیق درباره هندسه در راز و رمزهای دینی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 26

 

هندسه در راز و رمزهای دینی

بررسی تطبیقی دایره به عنوان نماد دینی در تمدن‌های بین‌النهرین، ایران، آیین بودایی هند و چین

مقدمه:

در جهان باستان، اعتقادات دینی و اسطوره‌ای سر منشأ بسیاری حرکت‌های انسانی بود. درون و ذات هر پدیده‌ای که رخ می‌داد به نوعی به اسطوره و دین پیوند می‌خورد و هنر بهترین وسیله برای نمایش این تفکر دینی و اسطوره‌ای بود.

در هنر باستانی، برخی نقش‌ها و نمادها صرفا تصویر نبودند بلکه نماد یک عقیده و سمبل دینی بودند. از میان این نشانه‌های دینی می‌توان به دایره اشاره کرد. دایره در جهان باستان از جمله بین‌النهرین، ایران، مصر، هند و تمدن‌های بودایی مذهب نقش مهمی را به عنوان سمبل دینی به عهده گرفته است.

حضور دایره در ابتدا در ادیان خدا - خورشید، از بین‌النهرین شروع شد و به ایران رفت. دایره نماد خدای خورشید بود ولی بعدها به عنوان نماد دینی و عقیدتی به مصر و چین و هند و... رفت و نقش‌های متعددی به خود گرفت.

دایره و مرکز از جمله رمزهای اساسی محسوب می‌شوند. درخت زندگی و مار، در زمانی اساطیری و در بهشت روی زمین که مستدیر توصیف شده، نشانه‌ها و نگاهبانان مرکز بودند. در غالب تمدن‌ها، ابدیت به شکل دایره و چرخ و اروبوروس، ماری که دمش را گاز گرفته تصویر می‌شود. شکل مدور نمودار یکی از مهم‌ترین جهات زندگی یعنی وحدت و کلیت و شکفتگی و کمال است. انسان غالبا در درون دایره‌ای که نشانگر تناسبات پیکر است تصویر شده است. در بسیاری سنن، به این شکل بسته که انسان را در برگرفته؛ محافظت می‌کند، کار ویژه‌ای جادویی منسوب شده است.(مونیک دوبوکور،1376،ص77(

در تمامی ادیان و اساطیری که خورشید نقش مهمی در آن‌ها ایفا می‌کند شکل خورشید به تدریج تبدیل به دایره شده و به عنوان نماد خورشید در هنرهای دینی آنان مطرح شده است.«خورشید غالبا در مرکز کیهان تصویر شده است و نشانه‌ی عقل عالم به شمار رفته است آن چنان که قلب آدمی مقر بعضی قوای وی محسوب می‌شود. خورشید به عنوان قلب جهان و چشم عالم، گاه در مرکز چرخ فلک البروج می‌درخشد و نیز یکی از صور درخت جهان است که در این نقش پرتوهایش درخت زندگی به شمار می‌روند(مونیک دوبوکور،1376، ص86)

در این تحقیق به بررسی تطبیقی دایره در اعتقادات مذهبی بین‌النهرین، ایران، هند و نیز جهان بودایی مانند چین پرداخته می‌شود، به اهمیت دایره در هنر مذهبی جهان باستان توجه شود.دایره در هنر بین‌النهرین و ایران

در تمدن بین‌النهرین، آشور( آسور) خدای بزرگ و محافظ کشور آشور است. قرص بالدار او را احاطه کرده است و کمانی بر ضد دشمنان دارد. وی حامی جنگ و سپاه کشور خود است.(جیمز هال، ص327)در کهن‌ترین تصاویر خورشید- خدایان، هاله‌ی تقدس ظاهر می‌شود که به شکل قرص است. هاله یا به صورت قرص ساده یا پرتوهای نوری در می‌آید که از سر آن‌ها ساطع است.(جیمز هال، ص221)

دایره و چرخ همواره بر یکدیگر دلالت کرده‌اند و همراه هم بوده و گاه به یکدیگر تبدیل شده‌اند. اولین چرخ‌هایی که در تاریخ نشانی از آن‌ها یافت شده چرخ‌های ارابه ای‌ است مخصوص حمل اموات که کاتبی سومری در 3500 ق.م آن را تصویر کرده است.(مونیک دوبوکور،1376ص87)صلیب با چهار بازوی مساوی – که ابتدا دایره بود و- درون یک دایره محاط شده است، چهار جهت اصلی آن در بین‌النهرین نماد چهار جهت اصلی طبیعت و بادهای باران زاست که نماد خدایان آسمان، آب و هوا است و نیز


دانلود با لینک مستقیم


تحقیق درباره هندسه در راز و رمزهای دینی

تحقیق درباره ی جبر خطی و هندسه تحلیلی 25ص

اختصاصی از یارا فایل تحقیق درباره ی جبر خطی و هندسه تحلیلی 25ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 25

 

فاطمه رضایی (محاسبات عددی)

فصل 1

جبر خطی و هندسه تحلیلی

ماتریس

یک ماتریس از مرتبه n×m جدول مستطیلی از اعداد شامل m سطر و n ستون است که به صورت زیر آن را نمایش می دهیم:

 

که عنصطر سطرi ام و ستون j ام است را درایه (مولفه ) I,j ام ماتریس A می نامیم.

دو ماتریس A و B را مساوی گوییم هرگاه مرتبه های آنها با هم برابر باشد (هم مرتبه باشند) و درایه های متناظر آنها با هم مساوی باشد.

1-1-1- معرفی برخی از ماتریس های خاص

1) ماتریس سطری: اگر ماتریس A دارای یک سطر یعنی از مرتبه باشد آن را سطری از مرتبه n می نامیم.

2) ماتریس ستونی: اگر ماتریس A دارای یک ستون یعنی از مرتبه باشد آن را ستونی از مرتبه m می نامیم.

3) ماتریس صفر: ماتریسی که همه درایه های آن صفر است یعنی را ماتریس صفر نامیده و اگر از مرتبه باشد آن را با نماد نمایش می دهیم.

4) ماتریس مربعی: ماتریسی که تعداد سطرها و ستون های آن با هم مساوی هستند را ماتریس مربعی می نامیم و اگر تعداد سطرهای آن nباشد به آن ماتریس مربعی از مرتبهn می گوییم.

5) قطر اصلی: دریک ماتریس مربعی درایه های که برای آنها i=j باشد را درایه های قطری می نامیم و قطری که شامل این درایه هاست، قطر اصلی نامیده می شود.

6) اثر (تریس) ماتریس : در هر ماتریس مربعی مجموع عناصر واقع بر قطر اصلی را اثر (تریس) A نامیده و با trA نمایش می دهیم یعنی در هر ماتریس مربعی از مرتبه n:

 

7) ماتریس بالا و پایین مثلثی : ماتریس مربعی که همه درایه های زیر قطر اصلی آن صفر هستند یعنی

:

را ماتریس بالا مثلثی و ماتریس مربعی که درایه های بالای قطر اصلی آن صفر هستند، یعنی

:

را ماتریس پایین مثلثی می نامند.

8) ماتریس قطری: ماتریس مربعی که هم بالا مثلثی و هم پایین مثلثی است یعنی درایه های خارج قطر اصلی آن صفر هستند ( : ( را ماتریس قطری می نامند.

9) ماتریس همانی (واحد): ماتریس مربعی که همه عناصر خارج قطر اصلی آن صفر و درایه های قطر اصلی همگی 1 باشند و به عبارتی

 

را ماتریس همانی می نامند و اگر از مرتبه n باشد آن را با نماد نمایش می دهند.

تذکر: معمولاً درایه های ماتریس را با نمایش می دهند.

1-1-2- اعمال جبری روی ماتریس

1) جمع: اگر A و B دو ماتریس از مرتبه باشند جمع آنها ماتریسی است که هر درایه آن از جمع درایه های متناظر در ماتریس های A و B بدست می آید به عبارتی اگر آنگاه

 

2) تفریق : اگر A و B دو ماتریس از مرتبه باشند، تفاضل آنها یعنی ماتریسی است و

 

3) ضرب عدد (اسکالر) در ماتریس : اگر A ماتریس و عددی دلخواه باشد و انگاه

 

یعنی اسکالر در تک تک مولفه های A ضرب می شود.

4) ضرب: اگر و (تعداد سطرهای B با ستون های A برابر باشد) ماتریس حاصل ضرب آنها یعنی یک ماتریس است و

 

به عبارت دیگر از ضرب سطر j ام A در ستون j ام Bبه صورت مولفه به مولفه بدست می آید.

نکته 1: اعمال جبری روی ماتریس ها تمامی خواص اعمال جبری روی اعداد (مانند جابه جایی، شرکت پذیری و ... ) را دارند به جز آنکه ضرب ماتریس ها در حالت کلی خاصیت جابه جایی ندارد یعنی


دانلود با لینک مستقیم


تحقیق درباره ی جبر خطی و هندسه تحلیلی 25ص

تحقیق و بررسی در مورد افلاطون و هندسه

اختصاصی از یارا فایل تحقیق و بررسی در مورد افلاطون و هندسه دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 17

 

افلاطون بر سردر آکادمی خود نوشت: «هرکس هندسه نمی داند وارد نشود.»

گذشته از این که هدف افلاطون از این گفته چه بود، یا حتی این ماجرا حقیقت است یا افسانه، این نکته بیانگر این حقیقت است که هندسه در دوران قدیم از اهمیت و اعتبار فوق العاده ای برخوردار بود و بیش از هر دانش دیگری مورد احترام بود، حتی یادگیری هندسه را برای آموختن فلسفه لازم می دانستند. شاید یک دلیل این نکته این مطلب باشد که هندسه بیش از هر دانش شناخته شده آن زمان نظری بود و بنابراین می توانست در زمانی که علوم دیگر به بیراهه می رفتند یا دوران طفولیت را طی می کردند، مستقلاً به راه خود ادامه دهد. از طرف دیگر هندسه کاربردی ترین علم زمان بود. قطعاً هندسه در ایجاد بناهای شکوهمند که میراث بشری محسوب می شود، از جمله اهرام شگفت انگیز مصر نقش بسزایی داشته است.تالس را پیشگام هندسه می شناسند، پس از وی نیز فیثاغورث، افلاطون، اقلیدس نیز هرکدام سهم شایان توجهی در گسترش و توسعه این شاخه از دانش ایفا کردند. تاریخ پربار فرهنگ و تمدن ایرانی نیز پر است از نام و چهره مشاهیر بسیار ارزنده ای که در طول چندین سده مشعل دار تحقیقات علمی جهان بودند. آنان با استفاده از دستاوردهای پیشینیان و تکیه بر سعی و تلاش خود، دانش بشری و علی الخصوص هندسه را به مدارج بسیار بالاتری رهنمون ساختند. چهره هایی از جمله خوارزمی، خیام، خواجه نصیر، ابوالوفای بوزجانی، جمشید کاشانی و بسیاری دیگر از جمله نام آورترین ریاضیدانان ایرانی هستند که در تاریخ ریاضیات جهان از مقام شامخ و جایگاه بسیار والایی برخوردارند. آنان توانستند با تشکیل زیج ها و انجام رصدهای دقیق تقویم جدیدی بر اساس سال خورشیدی ابداع کنند. با پایه گذاری قوانین حرکت، حفر قنات و استفاده از چرخ چاه را برای آبیاری کشترازها ممکن ساختند. با توسعه اخترشناسی به نیاز دریانوردان برای یافتن مسیر صحیح کشتی و نیاز مؤمنان برای یافتن جهت درست قبله پاسخ دادند. بدین ترتیب به همت این بزرگان، جواب پرسش هایی که در دوران شکوفایی دانش یونان حتی مطرح نشده بود، به دست آمد. بعدها نیز دانشمندانی نظیر دکارت، فرما، پاسکال، اویلر و گوس به توسعه همین دستاوردها پرداختند، به طوری که امروزه انواع مختلفی از هندسه برای حل انواع گونان مسئله ایجاد و گسترش یافته است. تا جایی که حتی پذیرش شاخه های جدیدی از هندسه همانند هندسه نا اقلیدسی که توسط لباچوفسکی و سایرین ابداع شده بود، برای بزرگترین ریاضیدانان زمان غیرممکن به نظر می آمد.هرچند که امروز ریاضیات بسیار گسترش یافته است اما باید دانست که هندسه هیچگاه اهمیت خود را از دست نداده است و همپای تحول سایر شاخه های دانش بشری، به تبدیل و تحول و نوزایی مدام دست زده است.بدیهی است هنگامی که به پشت سر خود نگاه کرده و تاریخ پرفراز و نشیب ریاضیات را مشاهده می کنیم، خود رادر مقابل اقیانوسی از دانش بشری می یابیم که گردآوری و تدوین عمده ترین دستاوردهای آن، برترین اراده ها را به هماوردی نابرابر می طلبد.اما محمدهاشم رستمی از دبیران با سابقه آموزش و پرورش موفق به انجام این کار سترگ شده است و طی بیش از چهل سال تحقیق دایره المعارف جامعی از هندسه تهیه کرده است که گفته می شود بالغ بر۲۰ جلد خواهد بود و تاکنون ۱۴ جلد آن به چاپ رسیده است. وی در این کتاب عمده ترین و برجسته ترین مفاهیم، قضیه ها، مسئله ها و تعریف ها را همراه با گوشه هایی از تاریخ هندسه و سرگذشت مشاهیر این شاخه تدوین کرده است، تا علاقه مندان به این شاخه از ریاضی با دسترسی به تمام مطالب مربوط به هر مبحث و حل و بررسی آنها به احاطه کامل بر آن مبحث دست یابند و احیاناً خود قضیه ها و مسئله ها را تعمیم داده و یا قضیه ها جدیدی را کشف کرده و مسئله های نویی را حل کنند.گروه علم ضمن آرزوی موفقیت برای این مؤلف، گفت وگویی را با وی ترتیب داده است که در زیر می آید.• آقای رستمی،  در ابتدا مختصری از خودتان بگویید.در سال ۱۳۱۸ در طبس متولد شدم. دیپلم ریاضی را در سال ۱۳۳۸ از دبیرستان ابومسلم مشهد و لیسانس ریاضی را در سال ۱۳۴۱ از دانشسرای عالی تهران دریافت کردم.• از فعالیت های خود در عرصه آموزش ریاضیات هم صحبت کنید.از سال ۱۳۴۱ به تدریس ریاضیات در دبیرستان ها، دانشسرای مقدماتی، مراکز تربیت معلم و دانشگاه پرداختم. از سال ۱۳۵۰ عضو شورای برنامه ریزی و تألیف کتب درسی (شاخه نظری) وزارت آموزش و پرورش هستم و در برنامه ریزی و تألیف چند کتاب درسی ریاضی در مقطع های دبستان و دبیرستان مشارکت داشتم که این فعالیت تاکنون ادامه دارد.چند سال عضو شورای ریاضی دفتر آموزش ضمن خدمت بوده ام که طرح آموزش مستمر دبیران ریاضی را با همکاری استادان دانشگاه و مراکز تربیت معلم و کارشناسان دفتر برنامه ریزی تهیه کردیم و در چهارمین کنفرانس آموزش ریاضی ایران ارائه دادیم. عضو گروه ریاضی انتشارات مدرسه، عضو هیأت تحریریه مجله ریاضی برهان، عضو انجمن ریاضی و عضو شورای برنامه ریزی دفتر تألیف رشته های فنی و حرفه ای وزارت آموزش و پرورش هستم.


دانلود با لینک مستقیم


تحقیق و بررسی در مورد افلاطون و هندسه