یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

پایان نامه کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

اختصاصی از یارا فایل پایان نامه کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن دانلود با لینک مستقیم و پرسرعت .

پایان نامه کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن


پایان نامه کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

 

 

 

 

 

 

 



فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:61

فهرست مطالب:
عنوان     صفحه
کاربرد تبدیل لاپالس در تحلیل مدار    1
16-1- مقدمه    1
16-2- عناصر مدار در حوزة s    2
16-3- تحلیل مدار در حوزة s    9
16-4 چند مثال تشریحی    10
16-5 تابع ضربه در تحلیل مدار    28
16-6 خلاصه    46
17-5- تابع تبدیل و انتگرال کانولوشن    48
 مراجع    61

 
کاربرد تبدیل لاپالس در تحلیل مدار
16-1- مقدمه
تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است. نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد. دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند. بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند. اما در روشهای کلاسیک حل معادلات دیفرانسیل شرایط اولیه زمانی وارد می شوند که می خواهیم ضرایب مجهول را محاسبه کنیم.
هدف ما در این فصل ایجاد روشی منظم برای یافتن رفتار گذرای مدارها به کمک تبدیل لاپلاس است. روش پنج مرحله ای بر شمرده شده در بخش 15-7 اساس این بحث است. اولین گام در استفاده موثر از روش تبدیل لاپلاس از بین بردن ضرورت نوشتن معادلات انتگرالی –دیفرانسیلی توصیف کنندة مدار است. برای این منظور باید مدار هم از مدار را در حوزةs به دست آوریم. این امر به ما امکان می دهد که مداری بسازیم که مستقیماً در حوزة تحلیل شود بعد از فرمولبندی مدار در حوزة sمی توان از روشهای تحلیلی بدست آمده (نظیر روشهای ولتاژ گره، جریان خانه و ساده سازی مدار) استفاده کرد و معادلات جبری توصیف کنندة مدار را نوشت. از حل این معادلات جبری، جریانها و ولتاژهای مجهول به صورت توابعی گویا به دست می آیند که تبدیل عکس آنها را به کمک تجزیه به کسرهای ساده به دست می اوریم. سرانجام روابط حوزه زمانی را می آزماییم تا مطمئن شویم که جوابهای به دست امده با شرایط اولیة مفروض و مقادیر نهایی معلوم سازگارند.
در بخش 16-2- هم از عناصر را در حوزة s به دست می آوریم. در شروع تحلیل مدارهای حوزة s باید دانست که بعد ولتاژ تبدیل شده ولت ثانیه و بعد جریان تبدیل شده آمپر ثانیه است. بعد نسبت ولتاژ به جریان در حوزة s ولت بر آمپر است و بنابراین در حوزة s یکای پاگیرایی ( امپدانس) اهم و یکای گذارایی ( ادمیتانس) زیمنس یا مو است.


دانلود با لینک مستقیم

برنامه نویسی کانولوشن در مطلب

اختصاصی از یارا فایل برنامه نویسی کانولوشن در مطلب دانلود با لینک مستقیم و پرسرعت .

برنامه نویسی کانولوشن در مطلب


برنامه نویسی کانولوشن در مطلب

فایل زیر یک مثال برای کانولوشن بر روی یک سگنال دلخواه است. شا می توانید سیگنال ورودی را تغییر و خروجی کانولوشن بر روی آن سیگنال را دریافت کنید.


دانلود با لینک مستقیم

کانولوشن دو بعدی با استفاده از fft در محیط matlab

اختصاصی از یارا فایل کانولوشن دو بعدی با استفاده از fft در محیط matlab دانلود با لینک مستقیم و پرسرعت .

کانولوشن دو بعدی با استفاده از fft در محیط matlab


کانولوشن دو بعدی با استفاده از fft  در محیط matlab

دانلود برنامه متلب کانولوشن 2 بعدی با استفاده از fft   در محیط متلب

 

شبیه conv2  در محیط متلب


دانلود با لینک مستقیم

دانلود پایان نامه رشته کامپیوتر درباره کدهای بلوکی و کدهای کانولوشن

اختصاصی از یارا فایل دانلود پایان نامه رشته کامپیوتر درباره کدهای بلوکی و کدهای کانولوشن دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه رشته کامپیوتر درباره کدهای بلوکی و کدهای کانولوشن


دانلود پایان نامه رشته کامپیوتر درباره کدهای بلوکی و کدهای کانولوشن

در این پست می توانید متن کامل این پایان نامه را  با فرمت ورد word دانلود نمائید:

 

 

 

 

 

 فصل اول : کدهای بلوکی و کدهای کانولوشن

1-1- مقدمه :

امروزه دو نوع عمومی از کدها استفاده می شود : کدهای بلوکی و کدهای کانولوشن . انکدینگ یک کد بلوکی را به تر تیبی از اطلاعات در قالب بلوکهای پیغام از k بیت اطلاعات برای هر کدام تقسیم می کند . یک بلوک پیغام با k مقدار باینری که بصورت u=(u1,u2,…,uk) نشان داده می شود ، یک پیغام نامیده می شود . در کدینگ بلوکی از سمبل u جهت نشان دادن k بیت پیغام از کل ترتیب اطلاعات استفاده می گردد .

تعداد کل بیت های پیغام متفادت موجود پیغام است . انکدر هر پیغام u را بطور غیر وابسته ، بصورت یک n تایی v=(v1,v2,…,vn) که کلمه کد (codeword) نامیده می شود ، ارسال می دارد . در کدینگ بلوکی سمبل v برای مشخص کردن سمبل بلوک از کل ترتیب انکد شده استفاده می گردد .

از پیغام قابل ساخت ، کلمه کد مختلف در خروجی انکدر قابل ایجاد است . این مجموعه کلمات کد با طول n یک کد بلوکی (n,k) نامیده می شود. نسبت R=k/n نرخ کد نامیده می شود . نرخ کد می تواند تعداد بیتهای اطلاعات که انکد می شود را در هر سمبل انتقال یافته ،محدود کند . در حالتیکه n سمبل خروجی کلمه کد که فقط به k بیت ورودی پیغام وابسته باشد ، انکدر را بدون حافظه (memory-less) گویند . انکدر بدون حافظه با ترکیبی از مدارات لاجیک قابل ساخت یا اجرا است . در کد باینری هر کلمه کد v باینری است . برای اینکه کد باینری قابل استفاده باشد ، بعبارت دیگر برای داشتن کلمات کد متمایز باید یا باشد . هنگامیکه k

چگونگی انتخاب بیت های افزونگی تا اینکه ارسال قابل اطمینانی در یک کانال نویزی داشته باشیم از اصلی ترین مسائل طراحی یک انکدر است .

انکدر یک کد کانولوشن نیز به همان ترتیب ، k بیت بلوکی از ترتیب اطلاعات u را می پذیرد و ترتیب انکد شده ( کلمه کد ) v با n  سمبل بلوکی را می سازد . باید توجه کرد که در کدینگ کانولوشن سمبل های u و v جهت مشخص کردن بلوکهای بیشتر از یک بلوک استفاده می گردند . بعبارت دیگر هر بلوک انکد شده ای نه تنها وابسته به بلوک پیغام k بیتی متناظرش است ( در واحد زمان )‌ بلکه همچنین وابسته به m بلوک پیغام قبلی نیز می باشد . در این حالت انکدر دارای حافظه (memory ) با مرتبه m است .

محصول انکد شده ترتیبی است از یک انکدر k ورودی ، n خروجی با حافظه مرتبه m که کد کانولوشن (n,k,m) نامیده می شود . در اینجا نیز R=k/n نرخ کد خواهد بود و انکدر مذکور با مدارات لاجیک ترتیبی قابل ساخت خواهد بود . در کد باینری کانولوشن ، بیت های افزونگی برای تقابل با کانال نویزی می تواند در حالت k

معمولاً k و n اعداد صحیح کوچکی هستند و افزونگی بیشتر با افزایش مرتبه حافظه از این کدها بدست می آید . و از این رو k و n و در نتیجه R ثابت نگه داشته می شود.

اینکه چگونه استفاده کنیم از حافظه تا انتقالی قابل اطمینان در یک کانال نویزی داشته باشیم ، از مسائل مهم طراحی انکدر ها محسوب می شود .

1-2– ماکزیمم احتمال دیکدینگ Maximum Likelihood Decoding

یک بلوک دیاگرام از سیستم کد شده در یک کانال AWGN با کوانتیزاسیون محدود خروجی در شکل 1 نشان داده شده است.

در این سیستم خروجی منبع u نشاندهنده پیغام k بیتی ، خروجی انکدر ، v نشاندهنده کلمه کد n- سمبلی خروجی دیمدولاتور ، r نشاندهنده آرایه Q دریافت شده n تایی متناظر و خروجی دیکدر نشاندهنده تخمینی از پیغام انکد شده k بیتی است . در سیستم کد شده کانولوشن ، u ترتیبی از kl بیت اطلاعات و v یک کلمه کد است که دارای N=nl+nm=n(l+m) سمبل می باشد . kl طول ترتیب اطلاعات و N طول کلمه کد است . سرانجام nm سمبل انکد شده بعد از آخرین بلوک از بیتهای اطلاعات در خروجی ایجاد می گردد . این عمل در طول m واحد زمانی حافظه انکدر انجام می پذیرد . خروجی دی مدولاتور ، r یک N تایی دریافت شده Q- آرایه ای است و خروجی یک تخمین از ترتیب اطلاعات می باشد. در واقع دیکدر می بایستی یک تخمین از ترتیب اطلاعات u براساس ترتیب دریافت شده r تولید نماید . پس یک تناظر یک به یک بین ترتیب اطلاعات u و کلمه کد v وجود دارد که دیکدر بر این اساس می تواند یک تخمین از کلمه کد v بدست آورد . روشن است که در صورتی است ، اگر و فقط اگر .

قانون دیکدینگ (یا برنامه دیکدینگ ) در واقع استراتژی انتخاب یک روش تخمین ، جهت تخمین کلمه کد از هر ترتیب دریافت شده ممکنr است . اگر کلمه کد v فرستاده شده باشد ، یک خطای دیکدینگ رخ داده است اگر و فقط اگر .

با دریافت r ، احتمال خطای شرطی دیکدر بصورت زیر تعریف می گردد : (1)

پس احتمال خطا دیکدر : (2) بدست می آید .

P(r) وابسته به قانون دیکدینگ نمی باشد . از این رو یک دستورالعمل دیکدینگ بهینه یعنی با حداقل P(E) باید را برای تمام مقادیر R به حداقل برساند .

به حداقل رسانیدن به مفهوم به حداکثر رسانیدن است . توجه گردد که اگر برای یک r دریافت شده با احتمال ماکزیمم انتخاب کردن ( تخمین ) از کلمه کد v به حداقل می رسد : (3) که شبیه ترین کلمه از r دریافت شده است . در صورتیکه تمام ترتیبات اطلاعات و درپی آن تمام کلمات کد مشابه باشند ، ( یعنی P( r ) برای تمام v ها یکسان باشد ) حداکثر کردن رابطه 3 معدل حداکثر کردن P(r|v) است . و برای یک DMC(Discrete memoryless channel) داریم :   (4)‌ .

باید توجه داشت که برای یک کانال بدون حافظه هر سمبل دریافت شده فقط به سمبل فرستاده شده متناظرش وابسته است . یک دیکدر که روش تخمینی جهت ماکزیمم کردن رابطه 4 انتخاب کند ، دیکدر با حداکثر احتمال نامیده می شود . MLD(Maximum Likelihood Decoder) – ماکزمم کردن رابطه 4 معادل ماکزمم کردن تابع احتمال لگاریتمی زیر است : (5)  بنابراین یک MLD برای یک DMC یک را بعنوان تخمینی از کلمه کد v برگزیند که رابطه 5 ماکزیمم گردد . درصورتیکه کلمات که معادل نباشد ، MLD لزوماً بهینه نمی گردد.

دراین حالت احتمالات شرطی P(r|v) باید بوسیله احتمالات کلمات کد P ( r) وزن داده شود تا مشخص گردد که کدام کلمه کد P(v|r) را ماکزیمم می کند .

اکنون مشخصه های MLD در یک BSC (Binary systematic Channel) مورد بررسی قرار می گیرد . در این حالت r  یک ترتیب باینری است که بغلت نویزی بودن کانال ممکن است از کلمه کد انتقال یافته v در بعضی موقعیت ها متفاوت باشد .

وقتی و بالعکس وقتی در نظر می گیریم . d(r,v) را فاصله بین rوv ( یعنی تعداد موقعیت های متفاوت بین rو v ) در نظر می گیریم . برای یک طول n یک کد بلوکی رابطه 5 بشکل زیر در می آید : (6)

. توجه گردد که برای کد کانولوشن n در رابطه 6 با N  بزرگ جایگزین می گردد .

در صورتیکه را برای P<1/2 و  ثابت برای تمام v ها ، در نظر بگیریم ، قاعده دیکدینگ MLD برای BSC ، را بعنوان کلمه کد v  انتخاب می کند که فاصله d(r,v) را بین rوv به حداقل برساند . بعبارت دیگر کلمه کدی را انتخاب می کند که در تعداد کمتری از موقعیتها از ترتیب دریافت شده ، متفاوت باشد . برای همین یک MLD برای BSC یک دیکدر با حداقل فاصله نامیده می شود .

تحقیقات Shannon در رابطه به بررسی توانایی کانال نویزی در ارسال اطلاعت تئوری کدینگ کانال نویزی را حاصل کرد و بیان می دارد که هر کانال دارای یک ظرفیت کانال C است و برای هر نرخ R

که طول اجباری کد نامیده می شود . و توابع مثبتی از R برای R

مرزهای بنا نهاده شده در واقع بر اساس احتمال خطای متوسط از مجموعه تمام کدها بدست می آید . مادامیکه کدها بهتر از حد متوسط شکل گیرند ، تئوری کدینگ کانال نویزی ، وجود کدها را در مرزبندی روابط 7 و 8 تضمین می نماید اما بیان نمی دارد که این کدها چگونه ساخته شوند .

برای دست یافتن به احتمالات خطای خیلی کمتر برای کدهای بلوکی با نرخ ثابت R

یک MLD برای کدهای کانولوشن به تقریباص محاسبه برای دیکد کردن هر بلوک از k بیت اطلاعات احتیاج دادرد و این محاسبات با افزایش m زیاد می شود . از این رو با استفاده از دیکدینگ با ماکزیمم احتمال جهت دستیابی به احتمالات خطای پائین غیر عملی به نظر می رسد . لذا دو مشکل اساسی جهت دستیابی به احتمالات خطای پائین مورد نیاز است :

  • ساخت کدهای طولانی خوب با استفاده از دیکدینگ ماکزیمم احتمال که مرزهای روابط 7 و 8 را ارضا کند .
  • یافتن روشهای اجرایی ساده جهت انکدینگ و دیکدینگ این کدها .

 

(ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

متن کامل را می توانید دانلود نمائید

چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)

ولی در فایل دانلودی متن کامل پایان نامه

همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود است


دانلود با لینک مستقیم

دانلود مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

اختصاصی از یارا فایل دانلود مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن


دانلود مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

 

 

 

 

 

 

 


فرمت فایل : word(قابل ویرایش)

تعداد صفحات:66

فهرست مطالب:
عنوان     صفحه
کاربرد تبدیل لاپالس در تحلیل مدار    1
16-1- مقدمه    1
16-2- عناصر مدار در حوزة s    2
16-3- تحلیل مدار در حوزة s    9
16-4 چند مثال تشریحی    10
16-5 تابع ضربه در تحلیل مدار    28
16-6 خلاصه    46
17-5- تابع تبدیل و انتگرال کانولوشن    48
 مراجع    64



 
کاربرد تبدیل لاپالس در تحلیل مدار
16-1- مقدمه
تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است. نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد. دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند. بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند. اما در روشهای کلاسیک حل معادلات دیفرانسیل شرایط اولیه زمانی وارد می شوند که می خواهیم ضرایب مجهول را محاسبه کنیم.
هدف ما در این فصل ایجاد روشی منظم برای یافتن رفتار گذرای مدارها به کمک تبدیل لاپلاس است. روش پنج مرحله ای بر شمرده شده در بخش 15-7 اساس این بحث است. اولین گام در استفاده موثر از روش تبدیل لاپلاس از بین بردن ضرورت نوشتن معادلات انتگرالی –دیفرانسیلی توصیف کنندة مدار است. برای این منظور باید مدار هم از مدار را در حوزةs به دست آوریم. این امر به ما امکان می دهد که مداری بسازیم که مستقیماً در حوزة تحلیل شود بعد از فرمولبندی مدار در حوزة sمی توان از روشهای تحلیلی بدست آمده (نظیر روشهای ولتاژ گره، جریان خانه و ساده سازی مدار) استفاده کرد و معادلات جبری توصیف کنندة مدار را نوشت. از حل این معادلات جبری، جریانها و ولتاژهای مجهول به صورت توابعی گویا به دست می آیند که تبدیل عکس آنها را به کمک تجزیه به کسرهای ساده به دست می اوریم. سرانجام روابط حوزه زمانی را می آزماییم تا مطمئن شویم که جوابهای به دست امده با شرایط اولیة مفروض و مقادیر نهایی معلوم سازگارند.
در بخش 16-2- هم از عناصر را در حوزة s به دست می آوریم. در شروع تحلیل مدارهای حوزة s باید دانست که بعد ولتاژ تبدیل شده ولت ثانیه و بعد جریان تبدیل شده آمپر ثانیه است. بعد نسبت ولتاژ به جریان در حوزة s ولت بر آمپر است و بنابراین در حوزة s یکای پاگیرایی ( امپدانس) اهم و یکای گذارایی ( ادمیتانس) زیمنس یا مو است.
16-2- عناصر مدار در حوزة s
روش به دست آوردن مدار هم از عناصر مدار در حوزة s ساده است. نخست رابطة ولتاژ و جریان عنصر در پایانه هایش را در حوزه زمان می نویسم. سپس از این معادله تبدیل لاپلاس می گیریم به این طریق رابطة جبری میان ولتاژ و جریان در حوزة s به دست می آید. سرانجام مدلی می سازیم که رابطة میان جریان و ولتاژ در حوزة s را برآورد سازد. در تمام این مراحل قرارداد علامت منفی را به کار می بریم.
نخست از مقاومت شروع میکنیم، بنا به قانون اهم داریم
(16-1)                                    
از آنجا که R ثابت است، تبدیل لاپلاس معادلة (16-1) چنین است .
(16-2)                                V=RI
که در آن
 
بنا به معادلة (16-2) مدار هم ارز یک مقاومت در حوزة s مقاومتی برابر R اهم است که جریان آن Iآمپر – ثانیه و ولتاژ آن V ولت –ثانیه است.
مدارهای مقاومت در حوزة زمان و حوزه بسامد در شکل 16-1 دیده می شود به یاد داشته باشید که در تبدیل مقاومت از حوزة زمان به حوزة بسامد تغییری در آن ایجاد نمی شود.
القاگری با جریان اولیة Io در شکل 16-2 آمده است. معادلة ولتاژ و جریان آن در حوزة زمان چنین است.



شکل 16-1- مقاومت در الف) حوزة زمان ،ب) حوزة بسامد.




شکل 16-2- القا گر L هانری با جریان اولیه Io آمپر.
در حوزة زمان چنین است
(16-3)                        
پس از تبدیل لاپلاس گرفتن از معادلة (16-3) داریم
(16-4)                        
                            
به کمک دو مدار مختلف می توان معادلة (16-4) را تحقق بخشید. مدار هم از اول مداری است متشکل از یک امپدانس sL اهمی که با یک منبع ولتاژ مستقل ‎LIo ولت ثانیه ای متوالی است. این مدار در شکل 16-3 دیده می شود در بررسی مدار هم ارز حوزة بسامدی شکل 16-3 توجه کنید که جهت ولتاژ منبع LIo بر مبنای علامت منفی مجود در معادله (16-4) است توجه به این نکته نیز اهمیت دارد که Io علامت جبری مخصوص به خود را دارد. یعنی چنانچه مقدار اولیة I خلاف جهت مبنای I باشد آنگاه Io مقدار منفی دارد.


دانلود با لینک مستقیم