یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

اختصاصی از یارا فایل مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن دانلود با لینک مستقیم و پر سرعت .

مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن


مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

لینک پرداخت و دانلود در "پایین مطلب"

 

فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات:63

کاربرد تبدیل لاپالس در تحلیل مدار

16-1- مقدمه

تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است. نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد. دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند. بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند. اما در روشهای کلاسیک حل معادلات دیفرانسیل شرایط اولیه زمانی وارد می شوند که می خواهیم ضرایب مجهول را محاسبه کنیم.

هدف ما در این فصل ایجاد روشی منظم برای یافتن رفتار گذرای مدارها به کمک تبدیل لاپلاس است. روش پنج مرحله ای بر شمرده شده در بخش 15-7 اساس این بحث است. اولین گام در استفاده موثر از روش تبدیل لاپلاس از بین بردن ضرورت نوشتن معادلات انتگرالی –دیفرانسیلی توصیف کنندة مدار است. برای این منظور باید مدار هم از مدار را در حوزةs به دست آوریم. این امر به ما امکان می دهد که مداری بسازیم که مستقیماً در حوزة تحلیل شود بعد از فرمولبندی مدار در حوزة sمی توان از روشهای تحلیلی بدست آمده (نظیر روشهای ولتاژ گره، جریان خانه و ساده سازی مدار) استفاده کرد و معادلات جبری توصیف کنندة مدار را نوشت. از حل این معادلات جبری، جریانها و ولتاژهای مجهول به صورت توابعی گویا به دست می آیند که تبدیل عکس آنها را به کمک تجزیه به کسرهای ساده به دست می اوریم. سرانجام روابط حوزه زمانی را می آزماییم تا مطمئن شویم که جوابهای به دست امده با شرایط اولیة مفروض و مقادیر نهایی معلوم سازگارند.

در بخش 16-2- هم از عناصر را در حوزة s به دست می آوریم. در شروع تحلیل مدارهای حوزة s باید دانست که بعد ولتاژ تبدیل شده ولت ثانیه و بعد جریان تبدیل شده آمپر ثانیه است. بعد نسبت ولتاژ به جریان در حوزة s ولت بر آمپر است و بنابراین در حوزة s یکای پاگیرایی ( امپدانس) اهم و یکای گذارایی ( ادمیتانس) زیمنس یا مو است.

16-2- عناصر مدار در حوزة s

روش به دست آوردن مدار هم از عناصر مدار در حوزة s ساده است. نخست رابطة ولتاژ و جریان عنصر در پایانه هایش را در حوزه زمان می نویسم. سپس از این معادله تبدیل لاپلاس می گیریم به این طریق رابطة جبری میان ولتاژ و جریان در حوزة s به دست می آید. سرانجام مدلی می سازیم که رابطة میان جریان و ولتاژ در حوزة s را برآورد سازد. در تمام این مراحل قرارداد علامت منفی را به کار می بریم.

نخست از مقاومت شروع میکنیم، بنا به قانون اهم داریم

(16-1)                              

از آنجا که R ثابت است، تبدیل لاپلاس معادلة (16-1) چنین است .

(16-2)                           V=RI

که در آن

 

بنا به معادلة (16-2) مدار هم ارز یک مقاومت در حوزة s مقاومتی برابر R اهم است که جریان آن Iآمپر – ثانیه و ولتاژ آن V ولت –ثانیه است.

مدارهای مقاومت در حوزة زمان و حوزه بسامد در شکل 16-1 دیده می شود به یاد داشته باشید که در تبدیل مقاومت از حوزة زمان به حوزة بسامد تغییری در آن ایجاد نمی شود.

القاگری با جریان اولیة Io در شکل 16-2 آمده است. معادلة ولتاژ و جریان آن در حوزة زمان چنین است.

 

 

 

شکل 16-1- مقاومت در الف) حوزة زمان ،ب) حوزة بسامد.

   

 

 

 

 

 

شکل 16-2- القا گر L هانری با جریان اولیه Io آمپر.

در حوزة زمان چنین است

(16-3)                   

پس از تبدیل لاپلاس گرفتن از معادلة (16-3) داریم

(16-4)                   

                         

به کمک دو مدار مختلف می توان معادلة (16-4) را تحقق بخشید. مدار هم از اول مداری است متشکل از یک امپدانس sL اهمی که با یک منبع ولتاژ مستقل ‎LIo ولت ثانیه ای متوالی است. این مدار در شکل 16-3 دیده می شود در بررسی مدار هم ارز حوزة بسامدی شکل 16-3 توجه کنید که جهت ولتاژ منبع LIo بر مبنای علامت منفی مجود در معادله (16-4) است توجه به این نکته نیز اهمیت دارد که Io علامت جبری مخصوص به خود را دارد. یعنی چنانچه مقدار اولیة I خلاف جهت مبنای I باشد آنگاه Io مقدار منفی دارد.

مدار هم از دیگری که معادله (16-4) را برآورده، می سازد متشکل است از یک امپدانس

 

 

 

 

 

 

SL اهمی که با یک منبع جریان مستقل Io/s آمپر ثانیه ای موازی است. این مدار هم ارز در شکل 16-4 آمده است.

برای به دست آوردن مدار هم از شکل 16-4 راههای مختلفی موجود است. یکی از این راهها حل معادلة (16-4) نسبت به جریان I و ساخت مداری بر حسب معادلة به دست آمده بنابراین

(16-5)               

به سادگی مشاهده می شود که مدار شکل 16-4 معادلة (16-5) را برآورده می سازد دو راه دیگر به دست آوردن مدار شکل 16-4 عبارت اند از (1) به دست اوردن هم از نور تن مدار شکل (16-3، (2) به دست آوردن  جریان القا گر بر حسب ولتاژ آن و گرفتن تبدیل لاپلاس از معادلة به دست آمده این دو روش به صورت تمرین در مسائل 16-1 و 16-2 به خواننده واگذار می شود.

قابل توجه است که هرگاه انرژی اولیة ذخیره شده در القا گر صفر باشد یعنی اگر Io=o مدار هم ارز القا گر در حوزة بسامد به صورت القا گری با امپدانس sL اهم در می آید. این مدار در شکل 16-5 آمده است.

برای خازنهای با بار اولیه نیز دو مدار هم ارز در حوزة s وجود دارد. خازنی که با بار اولیة Vo ولت در شکل 16-6 دیده می شود. جریان خازن چنین است.

 

 

 

 

 

 

شکل 16-5 مدار خوزة بسامدی القاگری با جریان اولیه صفر.

 

 

 

 

شکل 16-6- خازنی C فارادی که تاVo ولت بار دار شده است.

(16-6)                   

پس از تبدیل معادلة (16-6) داریم

 

یا

(16-7)                    I=sCV-CVo

از معادله فوق دیده می شود که جریان I در حوزة بسامد از دو جریان شاخه ای تشکیل می شود یکی از شاخه ها از یک گذارایی به مقدار sc مو و دیگری از یک منبع جریان مستقل CVo آمپر ثانیه ای تشکیل  می شود. این مدار هم ارز در شکل 16-7 آمده است.

از حل معادلة (16-7) نسبت به V می توان مدار هم ارز متوالی خازن باردار را به دست آورد. بنابراین داریم

(16-8)                   

مداری که در شکل 16-8 آمده است تحقق معادلة (16-8) است.

در مدارهای هم ارز شکلهای 16-7 و 16-8، علامت جبری خود را دارد. یعنی اگر جهت  خلاف جهت مبنای  باشد  مقداری منفی خواهد بود. اگر ولتاژ اولیه خازن صفر باشد مدارهای هم ارز ساده می شوند و تنها امپدانس sc/1 اهمی باقی می ماند که در شکل 16-9 آمده است.

مدارهای حوزه بسامدی به دست آمده در این بخش در جدول 16-1 آمده اند. کاربرد این مدارها در بخش 16-4 نشان داده خواهد شد.

 

 

 

 

 

 

 

 

 

 

جدول 1016 مدارهای هم ارز در حوزة s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

شکل 16-9 مدار حوزة بسامدی خازنی با ولتاژ اولیة صفر

16-3- تحلیل مدار در حوزة s

پیش از بررسی مدارها در حوزة s به ذکر چند نکته می پردازیم که اساس تمام کارهای بعدی ماست.

نخست میدانیم که چنانچه در القا گر و خازنها انرژی اولیه نداشته باشیم رابطة ولتاژ و جریان آنها چنین است.

(16-9)            V=ZI

که در آن Z امپدانس (پاگیرایی) عنصر در حوزة s است. به این ترتیب امپدانس مقاومت R اهم، امپدانس القا گر sL اهم، و امپدانس خازن sC/1 اهم است. نکته ای که در معادلة (16-9) آمده است، در شکلهای 16-1(ب)، 16-5، و 16-9 مشخص شده است. گاه معادلة (16-9) را قانون اهم در حوزة s می نامند.

عکس پاگیرایی، گذارایی، گذاراییها در حوزة s دقیقاً همان قواعد ترکیب آنها در حوزة فازبرداری است. در تحلیل  حوزة بسامدی می توان از ساده کردنهای متوالی و موازی و تبدیلهای ستاره – مثلث استفاده کرد.

نکتة مهم دیگر این است که قوانین کبرشهف را می توان برای جریانها و ولتاژهای حوزة s به کار برد.


دانلود با لینک مستقیم


مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

دانلود تحقیق کدهای بلوکی و کدهای کانولوشن 76 ص

اختصاصی از یارا فایل دانلود تحقیق کدهای بلوکی و کدهای کانولوشن 76 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 89

 

بسمه تعالی

فصل اول : کدهای بلوکی و کدهای کانولوشن

1-1- مقدمه :

امروزه دو نوع عمومی از کدها استفاده می شود : کدهای بلوکی و کدهای کانولوشن . انکدینگ یک کد بلوکی را به تر تیبی از اطلاعات در قالب بلوکهای پیغام از k بیت اطلاعات برای هر کدام تقسیم می کند . یک بلوک پیغام با k مقدار باینری که بصورت u=(u1,u2,…,uk) نشان داده می شود ، یک پیغام نامیده می شود . در کدینگ بلوکی از سمبل u جهت نشان دادن k بیت پیغام از کل ترتیب اطلاعات استفاده می گردد .

تعداد کل بیت های پیغام متفادت موجود پیغام است . انکدر هر پیغام u را بطور غیر وابسته ، بصورت یک n تایی v=(v1,v2,…,vn) که کلمه کد (codeword) نامیده می شود ، ارسال می دارد . در کدینگ بلوکی سمبل v برای مشخص کردن سمبل بلوک از کل ترتیب انکد شده استفاده می گردد .

از پیغام قابل ساخت ، کلمه کد مختلف در خروجی انکدر قابل ایجاد است . این مجموعه کلمات کد با طول n یک کد بلوکی (n,k) نامیده می شود. نسبت R=k/n نرخ کد نامیده می شود . نرخ کد می تواند تعداد بیتهای اطلاعات که انکد می شود را در هر سمبل انتقال یافته ،محدود کند . در حالتیکه n سمبل خروجی کلمه کد که فقط به k بیت ورودی پیغام وابسته باشد ، انکدر را بدون حافظه (memory-less) گویند . انکدر بدون حافظه با ترکیبی از مدارات لاجیک قابل ساخت یا اجرا است . در کد باینری هر کلمه کد v باینری است . برای اینکه کد باینری قابل استفاده باشد ، بعبارت دیگر برای داشتن کلمات کد متمایز باید یا باشد . هنگامیکه k

چگونگی انتخاب بیت های افزونگی تا اینکه ارسال قابل اطمینانی در یک کانال نویزی داشته باشیم از اصلی ترین مسائل طراحی یک انکدر است .

انکدر یک کد کانولوشن نیز به همان ترتیب ، k بیت بلوکی از ترتیب اطلاعات u را می پذیرد و ترتیب انکد شده ( کلمه کد ) v با n سمبل بلوکی را می سازد . باید توجه کرد که در کدینگ کانولوشن سمبل های u و v جهت مشخص کردن بلوکهای بیشتر از یک بلوک استفاده می گردند . بعبارت دیگر هر بلوک انکد شده ای نه تنها وابسته به بلوک پیغام k بیتی متناظرش است ( در واحد زمان )‌ بلکه همچنین وابسته به m بلوک پیغام قبلی نیز می باشد . در این حالت انکدر دارای حافظه (memory ) با مرتبه m است .

محصول انکد شده ترتیبی است از یک انکدر k ورودی ، n خروجی با حافظه مرتبه m که کد کانولوشن (n,k,m) نامیده می شود . در اینجا نیز R=k/n نرخ کد خواهد بود و انکدر مذکور با مدارات لاجیک ترتیبی قابل ساخت خواهد بود . در کد باینری کانولوشن ، بیت های افزونگی برای تقابل با کانال نویزی می تواند در حالت k

معمولاً k و n اعداد صحیح کوچکی هستند و افزونگی بیشتر با افزایش مرتبه حافظه از این کدها بدست می آید . و از این رو k و n و در نتیجه R ثابت نگه داشته می شود .

اینکه چگونه استفاده کنیم از حافظه تا انتقالی قابل اطمینان در یک کانال نویزی داشته باشیم ، از مسائل مهم طراحی انکدر ها محسوب می شود .

1-2- ماکزیمم احتمال دیکدینگ Maximum Likelihood Decoding

یک بلوک دیاگرام از سیستم کد شده در یک کانال AWGN با کوانتیزاسیون محدود خروجی در شکل 1 نشان داده شده است :

 

شکل 1- سیستم codec در یک کانال AWGN

در این سیستم خروجی منبع u نشاندهنده پیغام k بیتی ، خروجی انکدر ، v نشاندهنده کلمه کد n- سمبلی خروجی دیمدولاتور ، r نشاندهنده آرایه Q دریافت شده n تایی متناظر و خروجی دیکدر نشاندهنده تخمینی از پیغام انکد شده k بیتی است . در سیستم کد شده کانولوشن ، u ترتیبی از kl بیت اطلاعات و v یک کلمه کد است که دارای N=nl+nm=n(l+m) سمبل می باشد . kl طول ترتیب اطلاعات و N طول کلمه کد است . سرانجام nm سمبل انکد شده بعد از آخرین بلوک از بیتهای اطلاعات در خروجی ایجاد می گردد . این عمل در طول m واحد زمانی حافظه انکدر انجام می پذیرد . خروجی دی مدولاتور ، r یک N تایی دریافت شده Q- آرایه ای است و خروجی یک تخمین از ترتیب اطلاعات می باشد. در واقع دیکدر می بایستی یک تخمین از ترتیب اطلاعات u براساس ترتیب دریافت شده r تولید نماید . پس یک تناظر یک به یک بین ترتیب اطلاعات u و کلمه کد v وجود دارد که دیکدر بر این اساس می تواند یک تخمین از کلمه کد v بدست آورد . روشن است که در صورتی است ، اگر و فقط اگر .

قانون دیکدینگ (یا برنامه دیکدینگ ) در واقع استراتژی انتخاب یک روش تخمین ، جهت تخمین کلمه کد از هر ترتیب دریافت شده ممکنr است . اگر کلمه کد v فرستاده شده باشد ، یک خطای دیکدینگ رخ داده است اگر و فقط اگر .

با دریافت r ، احتمال خطای شرطی دیکدر بصورت زیر تعریف می گردد : (1)

پس احتمال خطا دیکدر : (2) بدست می آید .

P(r) وابسته به قانون دیکدینگ نمی باشد . از این رو یک دستورالعمل دیکدینگ بهینه یعنی با حداقل P(E) باید را برای تمام مقادیر R به حداقل برساند .

به حداقل رسانیدن به مفهوم به حداکثر رسانیدن است . توجه گردد که اگر برای یک r دریافت شده با احتمال ماکزیمم انتخاب کردن ( تخمین ) از کلمه کد v به حداقل می رسد : (3) که شبیه ترین کلمه از r دریافت شده است


دانلود با لینک مستقیم


دانلود تحقیق کدهای بلوکی و کدهای کانولوشن 76 ص

کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

اختصاصی از یارا فایل کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن دانلود با لینک مستقیم و پر سرعت .

کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن


کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

 

فرمت فایل : word(قابل ویرایش)تعداد صفحات61

 


فهرست مطالب
عنوان صفحه
کاربرد تبدیل لاپالس در تحلیل مدار 1
16-1- مقدمه 1
16-2- عناصر مدار در حوزة s 2
16-3- تحلیل مدار در حوزة s 9
16-4 چند مثال تشریحی 10
16-5 تابع ضربه در تحلیل مدار 28
16-6 خلاصه 46
17-5- تابع تبدیل و انتگرال کانولوشن 48
مراجع 64

 

 

 


کاربرد تبدیل لاپالس در تحلیل مدار
16-1- مقدمه
تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است. نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد. دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند. بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند. اما در روشهای کلاسیک حل معادلات دیفرانسیل شرایط اولیه زمانی وارد می شوند که می خواهیم ضرایب مجهول را محاسبه کنیم.
هدف ما در این فصل ایجاد روشی منظم برای یافتن رفتار گذرای مدارها به کمک تبدیل لاپلاس است. روش پنج مرحله ای بر شمرده شده در بخش 15-7 اساس این بحث است. اولین گام در استفاده موثر از روش تبدیل لاپلاس از بین بردن ضرورت نوشتن معادلات انتگرالی –دیفرانسیلی توصیف کنندة مدار است. برای این منظور باید مدار هم از مدار را در حوزةs به دست آوریم. این امر به ما امکان می دهد که مداری بسازیم که مستقیماً در حوزة تحلیل شود بعد از فرمولبندی مدار در حوزة sمی توان از روشهای تحلیلی بدست آمده (نظیر روشهای ولتاژ گره، جریان خانه و ساده سازی مدار) استفاده کرد و معادلات جبری توصیف کنندة مدار را نوشت. از حل این معادلات جبری، جریانها و ولتاژهای مجهول به صورت توابعی گویا به دست می آیند که تبدیل عکس آنها را به کمک تجزیه به کسرهای ساده به دست می اوریم. سرانجام روابط حوزه زمانی را می آزماییم تا مطمئن شویم که جوابهای به دست امده با شرایط اولیة مفروض و مقادیر نهایی معلوم سازگارند.


دانلود با لینک مستقیم


کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

دانلود تحقیق کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

اختصاصی از یارا فایل دانلود تحقیق کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن


دانلود تحقیق کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

کاربرد تبدیل لاپالس در تحلیل مدار
16-1- مقدمه
تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است. نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد. دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند. بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند. اما در روشهای کلاسیک حل معادلات دیفرانسیل شرایط اولیه زمانی وارد می شوند که می خواهیم ضرایب مجهول را محاسبه کنیم.
هدف ما در این فصل ایجاد روشی منظم برای یافتن رفتار گذرای مدارها به کمک تبدیل لاپلاس است. روش پنج مرحله ای بر شمرده شده در بخش 15-7 اساس این بحث است. اولین گام در استفاده موثر از روش تبدیل لاپلاس از بین بردن ضرورت نوشتن معادلات انتگرالی –دیفرانسیلی توصیف کنندة مدار است. برای این منظور باید مدار هم از مدار را در حوزةs به دست آوریم. این امر به ما امکان می دهد که مداری بسازیم که مستقیماً در حوزة تحلیل شود بعد از فرمولبندی مدار در حوزة sمی توان از روشهای تحلیلی بدست آمده (نظیر روشهای ولتاژ گره، جریان خانه و ساده سازی مدار) استفاده کرد و معادلات جبری توصیف کنندة مدار را نوشت. از حل این معادلات جبری، جریانها و ولتاژهای مجهول به صورت توابعی گویا به دست می آیند که تبدیل عکس آنها را به کمک تجزیه به کسرهای ساده به دست می اوریم. سرانجام روابط حوزه زمانی را می آزماییم تا مطمئن شویم که جوابهای به دست امده با شرایط اولیة مفروض و مقادیر نهایی معلوم سازگارند.
در بخش 16-2- هم از عناصر را در حوزة s به دست می آوریم. در شروع تحلیل مدارهای حوزة s باید دانست که بعد ولتاژ تبدیل شده ولت ثانیه و بعد جریان تبدیل شده آمپر ثانیه است. بعد نسبت ولتاژ به جریان در حوزة s ولت بر آمپر است و بنابراین در حوزة s یکای پاگیرایی ( امپدانس) اهم و یکای گذارایی ( ادمیتانس) زیمنس یا مو است.
16-2- عناصر مدار در حوزة s
روش به دست آوردن مدار هم از عناصر مدار در حوزة s ساده است. نخست رابطة ولتاژ و جریان عنصر در پایانه هایش را در حوزه زمان می نویسم. سپس از این معادله تبدیل لاپلاس می گیریم به این طریق رابطة جبری میان ولتاژ و جریان در حوزة s به دست می آید. سرانجام مدلی می سازیم که رابطة میان جریان و ولتاژ در حوزة s را برآورد سازد. در تمام این مراحل قرارداد علامت منفی را به کار می بریم.
نخست از مقاومت شروع میکنیم، بنا به قانون اهم داریم
(16-1)                                    
از آنجا که R ثابت است، تبدیل لاپلاس معادلة (16-1) چنین است .
(16-2)                                V=RI
که در آن
 
بنا به معادلة (16-2) مدار هم ارز یک مقاومت در حوزة s مقاومتی برابر R اهم است که جریان آن Iآمپر – ثانیه و ولتاژ آن V ولت –ثانیه است.
مدارهای مقاومت در حوزة زمان و حوزه بسامد در شکل 16-1 دیده می شود به یاد داشته باشید که در تبدیل مقاومت از حوزة زمان به حوزة بسامد تغییری در آن ایجاد نمی شود.
القاگری با جریان اولیة Io در شکل 16-2 آمده است. معادلة ولتاژ و جریان آن در حوزة زمان چنین است.

 

فهرست مطالب
عنوان     صفحه
کاربرد تبدیل لاپالس در تحلیل مدار    1
16-1- مقدمه    1
16-2- عناصر مدار در حوزة s    2
16-3- تحلیل مدار در حوزة s    9
16-4 چند مثال تشریحی    10
16-5 تابع ضربه در تحلیل مدار    28
16-6 خلاصه    46
17-5- تابع تبدیل و انتگرال کانولوشن    48
 مراجع    64

 

 

شامل 63 صفحه word


دانلود با لینک مستقیم


دانلود تحقیق کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

پایان نامه کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

اختصاصی از یارا فایل پایان نامه کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن دانلود با لینک مستقیم و پرسرعت .

پایان نامه کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن


پایان نامه کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

فرمت فایل : word(قابل ویرایش)تعداد صفحات:61

 

فهرست مطالب

کاربرد تبدیل لاپالس در تحلیل مدار

-1- مقدمه

16-2- عناصر مدار در حوزة s

-3- تحلیل مدار در حوزة s

-4 چند مثال تشریحی

-5 تابع ضربه در تحلیل مدار

16-6 خلاصه

17-5- تابع تبدیل و انتگرال کانولوشن

مراجع

کاربرد تبدیل لاپالس در تحلیل مدار

16-1- مقدمه

تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است. نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد. دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند. بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند. اما در روشهای کلاسیک حل معادلات دیفرانسیل شرایط اولیه زمانی وارد می شوند که می خواهیم ضرایب مجهول را محاسبه کنیم.

هدف ما در این فصل ایجاد روشی منظم برای یافتن رفتار گذرای مدارها به کمک تبدیل لاپلاس است. روش پنج مرحله ای بر شمرده شده در بخش 15-7 اساس این بحث است. اولین گام در استفاده موثر از روش تبدیل لاپلاس از بین بردن ضرورت نوشتن معادلات انتگرالی دیفرانسیلی توصیف کنندة مدار است. برای این منظور باید مدار هم از مدار را در حوزةs به دست آوریم. این امر به ما امکان می دهد که مداری بسازیم که مستقیماً در حوزة تحلیل شود بعد از فرمولبندی مدار در حوزة sمی توان از روشهای تحلیلی بدست آمده (نظیر روشهای ولتاژ گره، جریان خانه و ساده سازی مدار) استفاده کرد و معادلات جبری توصیف کنندة مدار را نوشت. از حل این معادلات جبری، جریانها و ولتاژهای مجهول به صورت توابعی گویا به دست می آیند که تبدیل عکس آنها را به کمک تجزیه به کسرهای ساده به دست می اوریم. سرانجام روابط حوزه زمانی را می آزماییم تا مطمئن شویم که جوابهای به دست امده با شرایط اولیة مفروض و مقادیر نهایی معلوم سازگارند.

در بخش 16-2- هم از عناصر را در حوزة s به دست می آوریم. در شروع تحلیل مدارهای حوزة s باید دانست که بعد ولتاژ تبدیل شده ولت ثانیه و بعد جریان تبدیل شده آمپر ثانیه است. بعد نسبت ولتاژ به جریان در حوزة s ولت بر آمپر است و بنابراین در حوزة s یکای پاگیرایی ( امپدانس) اهم و یکای گذارایی ( ادمیتانس) زیمنس یا مو است.


دانلود با لینک مستقیم