نوع فایل word
قابل ویرایش 78 صفحه
چیکده:
این تحقیق به بررسی بار اطلاعاتی نسبت های مالی تهیه شده برمبنای جریانات نقدی می پردازد . اگر چه هر یک از در روش محتوای اطلا عاتی خاص را ارائه می کند و جایگزینی یک دیگر نمی توانند باشند،لیکن ارائه اناندر کنار یکدیگر تصویری روشن تر از وضعیت عملیاتی ونقد ینگی یک بنگاه اقتصادی را به معرض نمایشمی گذارد در این تحقیق ارتباط و همبستگی میان نسبت های نقدی ونسبتهای سنتی (تعهدی) مورد آزمون قرار می گیرند تا مشخص شود که ای نشانه هایی از وجود بار افزاینده اطلاعاتی در ارقام مورد مطالعه دیده می شود یا خیر. نتایج تحقیق بیانگرآن است که بین نسبت های نقدی وتعهدی همبستگی معنی داری وجود دارد و ارائه انها در کنار یک دیگر تصویری جامع تر از موقعیت یک سازمان ارائه می نماید.
فهرست مطالب:
چیکده
فصل اول
مقدمه
بیان مسئله
اهمیت موضوع
فرضیه
متغییرها
فصل دوم
مقدمه
مبانی حسابداری
مبنای نقدی (کامل)
مبنای تعهدی (کامل)
مبنای نیمه تعهدی
مبنای تعهدی تعدیل شده
مبنای نقدی تعدیل شده
مزایای مبنای تعهدی
حسابداری تعهدی
جایگاه مبنای تعهدی از نظر هیأت استانداردهای حسابداری
فرآیند تحول و شفافسازی حسابها
سیستم حسابداری تعهدی در بخش عمومی استرالیا
حسابداری تعهدی استرالیا را بررسی می کنیم.
گزارشهای مالی تعهدی
سیستمهای مدیریتی تعهدی
گزارشگری جامع دولت
بودجه بندی تعهدی
دیدگاههای موافق و مخالف
ناسازه ها و تضادها
مفاهیم اساسی
اهداف صورتهای مالی
اهداف تهیه و ارائه صورتهای مال به طور خلاصه بشرح زیر می باشد.
الف- ترزنامه
ب- صورت سود وزیان
ج- صورت های جریان نقدی
تاریخچه پیدایش صورت جریانهای نقدی
اهداف واهمیت تهیه صورت جریانهای نقدی
مفاهیم و تعریف وجوه نقد
مزایای صورت جریانهای نقدی
مهمترین مزایای صوت جریانهای نقدی عبارتنداز
ماهیت صورت جریانهای نقدی
فعالیتهای عملیاتی
فعالیتهای تامین مالی
تجزیه تحلیل و صورتهای مالی
ابزارهای اصلی تجزیه و تحلیل صورتهای مالی
نسبتهای مالی
سوابق موضوع تحقیق
سوابق موضوع در خارج از کشور
ارتباط وجه نقد حاصل از عملیات واقلام تعهدی با بازده سهام
شواهدی در مورد ارتباط بین سود واندازه گیری های مختلف جریانهای نقد
محتوای اطلاعاتی فزاینده اقلام تعهدی در مقابل جریانهای نقدی
نتایج تحقیق نشان می دهد که
محتوای اطلاعاتی نسبتهاس صورت تغییرات در وضعیت مالی
جریانهای نقدی مبنای دیگر در تجزیه تحلیل نسبتهای مالی
محتوای اطلاعاتی افزاینده سود ،سرمایه در گردش حاصل از مالیات وصورت
جریانهای نقدی
فصل سوم
روش تحقیق
ابزار شیوه گرد آوری اطلاعات
چگونگی گرد آوری اطلاعات
اطلاعات مورد نیاز
اطلاعات مورد نیاز جهت محاسبه این متغییرها به شرح زیر است
اندازه گیری متغیرها
الف نسبتهای مالی سنتی (ترازنامه و سود زیان)
ب) نسبتهای مالی صورت جریانهای نقدی
منابع
منابع:
http//mehrabkarimi.persianblog.ir/
http//www.tehran.ir
http//nvsn.blogfa.com/
http//network.penco.ir
مقدمه
موضوع اصلی این مقاله تحلیل دینامیکی مرتبه دوم سازه ها تحت بارهای زلزله است، که در حقیقت همان اعمال در تحلیل دینامیکی می باشد. یکی از راههای P-delta اثر در تحلیل دینامیکی، ملحوظ نمودن نیروهای P-delta اعمال اثر محوری حاصل از تحلیل دینامیکی مرتبه اول، ترکیب آنها با نیروی استاتیکی، بکارگیری روابط موجود در این زمینه و برآورد مقدار تأثیرات ثانویه است . وجود این نیروها، با تأثیر مستقیم در سختی مرتبه دوم عضوی، نتایج را تغییر می دهد و صورت عمومی معادلات کلاسیک ارتعاشی را دگرگون می سازد. اعمال ماتریس سختی مرتبه دوم استاتیکی به تنهایی به جای ماتریس سختی مرتبه اول در تحلیل دینامیکی، اثرهای ثانویه را به طور کامل نمی تواند ارائه دهد؛ زیرا ماهیت نیروهای محوری حاصل از بارهای دینامیکی با حالت عمومی بارگذاری استاتیکی متفاوت می باشد. در این مقاله تغییرات ماتریس های سختی عضوی و ماتریس سختی سیستم بر حسب زمان پیگیری و تفاوتهای میان دوگونه تحلیل دینامیکی آشکار شده است . از اهم این تفاوتها، علاوه بر تغییرمکانها، چرخشهای گره ای نیروهای محوری بویژه در تیرهای طبقات فوقانی می باشد.
فهرست :
چکیده
مقدمه
تشریح نظری اصول
معرفی سازه ها
تحلیل مرتبه اول و دوم سازه ها تحت بارهای دینامیکی
مقایسه، بررسی و تفسیر نتایج حاصل از تحلیلهای دینامیکی مرتبه اول و دوم
ارزیابی همبستگی پاسخ نیروها
نتیجه گیری
تفاوت قابل ملاحظه در مقدار چرخش گره ها
تفاوت قابل ملاحظه در نیروهای محوری تیرها
پدیده اختلاف فاز پاسخ
مراجع
برآورد رسوب و تعیین رابطه ای که بتواند دقیق ترین برآورد را داشته باشد همواره یکی از مهم ترین مسایل در زمینه مهندسی آب و سازه های هیدرولیکی، برای مدیریت بهتر منابع آب و آبهای ذخیره شده در مخازن سدها بوده است. برای تعیین رابطه مناسب در هر منطقه باید شرایط منطقه مورد مطالعه را با شرایطی که هر یک از روابط در آن شکل گرفته اند و با در نظر گرفتن محدودیت اطلاعات و داده ها که ممکن است در منطقه مورد مطالعه وجود داشته باشد، به دقت مقایسه و بررسی کرد تا بتوان به جواب مناسب تر و منطقی تری که به واقعیت نزدیک باشد دست یافت.
در این تحقیق، تعدادی از معادلات بار بستر و بار معلق و بار کل به صورت مطالعه موردی برای رودخانه دوغ در استان گلستان مورد مطالعه و بررسی قرار گرفتند و همچنین تحلیل حساسیت روابط به پارامترهای موثر در انتقال رسوب مانند دبی، سرعت و دانه بندی هم مورد بررسی قرار گرفتند تا بررسی شود که کدامیک از روابط به خطای ناشی از اندازه گیری، حساسیت بیشتری دارند.
با در دست داشتن بار معق اندازه گرفته شده، رابطه باگنولد به عنوان مناسب ترین رابطه بار معلق برای این منطقه انتخاب گردید. از طرفی با توجه به در دست نبودن اندازه گیری های مربوط به بار بستر و بار کل، از مقایسه خود روابط با هم با توجه به ویژ گی های هر رابطه، روابطی که ممکن است مناسب باشند، مشخص شدند. در تحلیل حساسیت هم روابطی که بیشترین و کمترین حساسیت را داشتند مشخص شدند. روابطی که دارای حساسیت بیشتری هستند باید در شرایطی مورد استفاده قرار بگیرند که اندازه گیری ها از دقت بالایی برخوردارند و در غیر اینصورت نتیجه بدست آمده از این روابط به هیچ وجه قابل اعتماد نمی باشد.
مهندسین هیدرولیک و زمین شناس طی دو قرن اخیر، حرکت مواد رسوبی در رودخانه ها را مورد بررسی قرار داده اند، چرا که رفتار مواد رسوبی، در هیدرولیک رودخانه و تغییر مورفولوژی آن حایز اهمیت است. طبیعت پیچیده انتقال رسوب و وابستگی آن به شرایط طبیعی، علم انتقال رسوب را به رشته ای تجربی و یا دست کم نیمه تجربی تبدیل کرده است.
برآورد رسوب و تعیین رابطه ای که بتواند دقیق ترین برآورد را داشته باشد همواره یکی از مهم ترین مسایل در زمینه مهندسی آب و سازه های هیدرولیکی، برای مدیریت بهتر منابع آب و آبهای ذخیره شده در مخازن سدها بوده است و تحقیقات بسیاری در این زمینه صورت گرفته ولی با وجود گذشت سالها تحقیق و بررسی در این زمینه هنوز رابطه ای که بتواند این مهم را برآورده کند وجود ندارد و اصولا این که انتظار داشته باشیم که به چنین رابطه ای دست یابیم امری غیر ممکن است
چرا که شرایط هیدرولیکی و طبیعی و آزمایشگاهی که هریک از روابط انتقال در آن شکل گرفتند نمی تواند برای همه مناطق و شرایط پاسخگو باشد و برای دستیابی به رابطه ای که میزان برآورد بهتری به ما بدهد باید شرایط منطقه مورد مطالعه را با شرایطی که هر یک از روابط در آن شکل گرفته اند و با توجه به فرضیاتی که بر اساس آن بنا نهاده شده اند و محدوده کاربردی که دارند و با در نظر گرفتن محدودیت اطلاعات و داده ها که ممکن است در منطقه مورد مطالعه وجود داشته باشد،
به دقت مقایسه و بررسی کرد تا شاید بتوان به جواب مناسب تر و منطقی تری که به واقعیت نزدیک باشد دست یافت و به همین دلیل است که هیچکدام از توابع انتقال رسوب ارایه شده تاکنون نتوانسته اند کاملا در مجامع مهندسی پذیرفته شوند. چرا که هیچیک قادر به تخمین و محاسبه دقیق نرخ انتقال رسوب نیستند. این عدم دقت در نتایج حاصل از معادلات، در رودخانه هایی که تحت تاثیر شرایط خاص جوی و طبیعی قرار دارند، آشکارتر است.
چکیده 1
مقدمه 2
1-1) هدف 3
1-2) پیشینه تحقیق 5
1-3) روش کار و تحقیق 12
مقدمه 13
2-1) انتقال بار بستر
2-2) روابط بار بستر
2-2-1) رابطه دوبویز
2-2-2) رابطه شیلدز
2-2-3) رابطه کالینسکی
2-2-4) رابطه چانگ سایمونز و ریچاردسون
2-2-5) رابطه میر پیتر
2-2-6) رابطه میر پیتر و مولر
2-2-7) رابطه شاکلیج1934
2-2-8) رابطه شاکلیج 1943
2-2-9) رابطه اینشتین
2-2-10) رابطه ونونی و بروکس
2-2-11) رابطه اینشتین براون
2-2-12) رابطه راتنر
2-2-13) رابطه فریجلینک
2-2-14) رابطه بایکر
2-2-15) رابطه ون راین
2-2-16) رابطه باگنولد
2-2-17) رابطه کیسی
2-3) بار معلق
2-4) روابط بار معلق
2-4-1) رابطه لین و کالینسکی
2-4-2) رابطه اینشتین
2-4-3) رابطه بروکس
2-4-4) رابطه چانگ سایمونز و ریچاردسون
2-4-5) رابطه باگنولد
2-4-6) رابطه ون راین
2-5) انتقال بار کل
2-6) روابط بار کل
2-6-1) رابطه توفالتی
2-6-2) رابطه باگنولد
2-6-3) رابطه انگلوند و هانسن
2-6-4) رابطه ایکرز و وایت
2-6-5) رابطه یانگ
2-6-6) رابطه لارسن
2-6-7) رابطه کلبی
2-6-8) رابطه شن و هیونگ
2-6-9) رابطه کریم و کندی 13
3-1) مشخصات رودخانه دوغ
3-2) مشخصات منحنی های دانه بندی منطقه
3-3) شکل مقطع عرضی رودخانه 69
4-1) روش محاسبه بار بستر
4-1-1) رابطه دوبویز
4-1-2) رابطه شیلدز
4-1-3) رابطه کالینسکی
4-1-4) رابطه چانگ سایمونز و ریچاردسون
4-1-5) رابطه میر پیتر
4-1-6) رابطه میر پیتر و مولر
4-1-7) رابطه شاکلیج1934
4-1-8) رابطه شاکلیج 1943
4-1-9) رابطه اینشتین
4-1-10) رابطه ونونی و بروکس
4-1-11) رابطه اینشتین براون
4-1-12) رابطه راتنر
4-1-13) رابطه فریجلینک
4-1-14) رابطه بایکر
4-1-15) رابطه ون راین
4-1-16) رابطه باگنولد
4-1-17) رابطه کیسی
4-2) روش محاسبه بار معلق
4-2-1) رابطه لین و کالینسکی
4-2-2) رابطه اینشتین
4-2-3) رابطه بروکس
4-2-4) رابطه چانگ سایمونز و ریچاردسون
4-2-5) رابطه باگنولد
4-2-6) رابطه ون راین
4-3) روش محاسبه بار کل
4-3-1) رابطه توفالتی
4-3-2) رابطه باگنولد
4-3-3) رابطه انگلوند و هانسن
4-3-4) رابطه ایکرز و وایت
4-3-5) رابطه یانگ
4-3-6) رابطه لارسن
4-3-7) رابطه کلبی
4-3-8) رابطه شن و هیونگ
4-3-9) رابطه کریم و کندی 76
5-1) مقایسه و ارزیابی نتایج
5-1-1) مقایسه مستقیم دقت معادلات انتقال رسوب با یکدیگر
5-1-2) خلاصه مقایسه ها و ارزیابی ها
5-1-3) روش های انتخاب توابع انتقال رسوب
5-2) تحلیل حساسیت
5-2-1) تحلیل حساسیت روابط به تغییرات دبی
5-2-2) تحلیل حساسیت روابط به تغییرات سرعت
5-2-3) تحلیل حساسیت روابط به تغییرات دانه بندی
5-3) نسبت بار بستر به معلق
6-1) نتیجه مقایسه روابط با یکدیگر
6-1-1) نتیجه گیری بار بستر
6-1-2) نتیجه گیری بار معلق
6-1-3) نتیجه گیری بار کل
6-1-4) نتیجه گیری تحلیل حساسیت
6-2) پیشنهادات
منابع و ماخذ
فهرست منابع فارسی 188
فهرست منابع لاتین 189
سایت های اطلاع رسانی 191
چکیده انگلیسی 192
1-1: خلاصه ای از پیشینه تحقیقات انجام شده در زمینه مورد مطالعه
2-1: خلاصه ای از روابط بار بستر مورد استفاده
2-2: خلاصه ای از روابط بار معلق مورد استفاده
2-3: خلاصه ای از روابط بار کل مورد استفاده
3-1: مشخصات اندازه قطرهای بدست آمده از 4 نمودار دانه بندی
3-2: محدوده دانه بندی رودخانه دوغ
3-3: مشخصات هیدرولیکی 4 اشل مختلف
4-1: مشخصات هیدرولیکی رودخانه دوغ در اشل 2 متر
4-2: برای نشان دادن مراحل حل رابطه توفالتی
4-3: برای نشان دادن مراحل حل رابطه توفالتی
4-4: برای نشان دادن مراحل حل رابطه توفالتی
4-5: برای نشان دادن مراحل حل رابطه توفالتی
4-6: برای نشان دادن مراحل حل رابطه توفالتی
4-7: برای نشان دادن مراحل حل رابطه توفالتی
5-1: تغییرات دبی رسوب بار بستر به دبی جریان
5-2: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار بستر به تغییرات دبی جریان
5-3: تغییرات دبی رسوب بار معلق به دبی جریان
5-4: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار معلق به تغییرات دبی جریان
5-5: تغییرات دبی رسوب بار کل به تغییرات دبی جریان
5-6: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار کل به تغییرات دبی جریان
5-7: تغییرات دبی رسوب روابط بار بستر به تغییرات سرعت
5-8: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار بستر به تغییرات سرعت
5-9: تغییرات دبی رسوب روابط بار معلق به تغییرات سرعت
5-10: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار معلق به تغییرات سرعت
5-11: تغییرات دبی رسوب روابط بار کل به تغییرات سرعت
5-12: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار کل به تغییرات سرعت
5-13: تغییرات دبی رسوب روابط بار بستر به تغییرات قطر دانه ها
5-14: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار بستر به تغییرات قطر دانه ها
5-15: تغییرات دبی رسوب روابط بار معلق به تغییرات قطر دانه ها
5-16: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار معلق به تغییرات قطر دانه ها
5-17: تغییرات دبی رسوب روابط بار کل به تغییرات قطر دانه ها
5-18: تغییرات شیب منحنی های حاصل از تحلیل حساسیت روابط بار کل به تغییرات قطر دانه ها
5-19: نسبت بار بستر به بار معلق برای اشل 2 متر
6-1: مقایسه روابط بار معلق
3-1: اولین نمودار دانه بندی منطقه
3-2: دومین نمودار دانه بندی منطقه
3-3: سومین نمودار دانه بندی منطقه
3-4: سومین نمودار دانه بندی منطقه
3-5: تغییرات غلظت به دبی جریان بر اساس اندازه گیری های 30 ساله
5-1: تغییرات دبی بار بستر رابطه دوبویز به تغییرات دبی جریان
5-2: تغییرات دبی بار بستر رابطه شیلدز به تغییرات دبی جریان
5-3: تغییرات دبی بار بستر رابطه کالینسکی به تغییرات دبی جریان
5-4: تغییرات دبی بار بستر میر پیتر به تغییرات دبی جریان
5-5: تغییرات دبی بار بستر میر پیتر و مولر به تغییرات دبی جریان
5-6: تغییرات دبی بار بستر شاکلیج 1934 به تغییرات دبی جریان
5-7: تغییرات دبی بار بستر شاکلیج1943 به تغییرات دبی جریان
5-8: تغییرات دبی بار بستر اینشتین به تغییرات دبی جریان
5-9: تغییرات دبی بار بستر اینشتین براون به تغییرات دبی جریان
5-10: تغییرات دبی بار بستر ونونی و بروکس به تغییرات دبی جریان
5-11: تغییرات دبی بار بستر راتنر به تغییرات دبی جریان
5-12: تغییرات دبی بار بستر فریجلینک به تغییرات دبی جریان
5-13: تغییرات دبی بار بستر بایکر به تغییرات دبی جریان
5-14: تغییرات دبی بار بستر ون راین به تغییرات دبی جریان
5-15: تغییرات دبی بار بستر کیسی به تغییرات دبی جریان
5-16: تغییرات کل روابط بار بستر به تغییرات دبی جریان
5-17: تغییرات دبی بار معلق اینشتین به تغییرات دبی جریان
5-18: تغییرات دبی بار معلق چانگ سایمونز به تغییرات دبی جریان
5-19: تغییرات دبی بار معلق باگنولد به تغییرات دبی جریان
5-20: تغییرات دبی بار معلق ون راین به تغییرات دبی جریان
5-21: تغییرات کل روابط بار معلق به تغییرات دبی جریان
5-22: تغییرات دبی بار کل توفالتی به تغییرات دبی جریان
5-23: تغییرات دبی بار کل انگلوند و هانسن به تغییرات دبی جریان
5-24: تغییرات دبی بار کل ایکرز و وایت به تغییرات دبی جریان
5-25: تغییرات دبی بار کل لارسن به تغییرات دبی جریان
5-26: تغییرات دبی بار کل شن و هیونگ به تغییرات دبی جریان
5-27: تغییرات دبی بار کل کریم و کندی به تغییرات دبی جریان
5-28: تغییرات دبی بار کل ون راین به تغییرات دبی جریان
5-29: تغییرات دبی بار کل اینشتین به تغییرات دبی جریان
5-30: تغییرات کل روابط بار کل به تغییرات دبی جریان
5-31: تغییرات دبی بار بستر رابطه دوبویز به تغییرات سرعت
5-32: تغییرات دبی بار بستر رابطه شیلدز به تغییرات سرعت
5-33: تغییرات دبی بار بستر رابطه کالینسکی به تغییرات سرعت
5-34: تغییرات دبی بار بستر رابطه میر پیتر به تغییرات سرعت
5-35: تغییرات دبی بار بستر رابطه میر پیتر و مولر به تغییرات سرعت
5-36: تغییرات دبی بار بستر رابطه شاکلیج1934 به تغییرات سرعت
5-37: تغییرات دبی بار بستر رابطه شاکلیج1943 به تغییرات سرعت
5-38: تغییرات دبی بار بستر رابطه اینشتین به تغییرات سرعت
5-39: تغییرات دبی بار بستر اینشتین براون به تغییرات سرعت
5-40: تغییرات دبی بار بستر ونونی و بروکس به تغییرات سرعت
5-41: تغییرات دبی بار بستر راتنر به تغییرات سرعت
5-42: تغییرات دبی بار بستر فریجلینک به تغییرات سرعت
5-43: تغییرات دبی بار بستر بایکر به تغییرات سرعت
5-44: تغییرات دبی بار بستر ون راین به تغییرات سرعت
5-45: تغییرات دبی بار بستر کیسی به تغییرات سرعت
5-46: تغییرات کل روابط بار بستر به تغییرات سرعت
5-47: تغییرات دبی بار معلق اینشتین به تغییرات سرعت
5-48: تغییرات دبی بار معلق چانگ سایمونز به تغییرات سرعت
5-49: تغییرات دبی بار معلق باگنولد به تغییرات سرعت
5-50: تغییرات دبی بار معلق ون راین به تغییرات سرعت
5-51: تغییرات کل روابط بار معلق به تغییرات سرعت
5-52: تغییرات دبی بار کل توفالتی به تغییرات سرعت
5-53: تغییرات دبی بار کل انگلوند و هانسن به تغییرات سرعت
5-54: تغییرات دبی بار کل ایکرز و وایت به تغییرات سرعت
5-55: تغییرات دبی بار کل لارسن به تغییرات سرعت
5-56: تغییرات دبی بار کل شن و هیونگ به تغییرات سرعت
5-57: تغییرات دبی بار کل کریم کندی به تغییرات سرعت
5-58: تغییرات دبی بار کل ون راین به تغییرات سرعت
5-59: تغییرات دبی بار کل اینشتین به تغییرات سرعت
5-60: تغییرات دبی تمام روابط بار کل به تغییرات رسوب
5-61: تغییرات دبی بار بستر دوبویز به تغییرات قطر دانه
5-62: تغییرات دبی بار بستر شیلدز به تغییرات قطر دانه
5-63: تغییرات دبی بار بستر کالینسکی به تغییرات قطر دانه
5-64: تغییرات دبی بار بستر میر پیتر به تغییرات قطر دانه
5-65: تغییرات دبی بار بستر میر پیتر و مولر به تغییرات قطر دانه
5-66: تغییرات دبی بار بستر شاکلیج1934 به تغییرات قطر دانه
5-67: تغییرات دبی بار بستر شاکلیج1943 به تغییرات قطر دانه
5-68: تغییرات دبی بار بستر اینشتین به تغییرات قطر دانه
5-69: تغییرات دبی بار بستر اینشتین براون به تغییرات قطر دانه
5-70: تغییرات دبی بار بستر ونونی و بروکس به تغییرات قطر دانه
5-71: تغییرات دبی بار بستر راتنر به تغییرات قطر دانه
5-72: تغییرات دبی بستر فریجلینک به تغییرات قطر دانه
5-73: تغییرات دبی بار بستر بایکر به تغییرات قطر دانه
5-74: تغییرات دبی بار بستر ون راین به تغییرات قطر دانه
5-75: تغییرات دبی بار بستر کیسی به تغییرات قطر دانه
5-76: تغییرات دبی کل روابط بار بستر به تغییرات قطر دانه
5-77: تغییرات دبی بار معلق اینشتین به تغییرات قطر دانه
5-78: تغییرات دبی بار معلق چانگ سایمونز به تغییرات قطر دانه
5-79: تغییرات دبی بار معلق باگنولد به تغییرات قطر دانه
5-80: تغییرات دبی بار معلق ون راین به تغییرات قطر دانه
5-81: تغییرات دبی بار معلق اینشتین و باگنولد به تغییرات قطر دانه
5-82: تغییرات دبی بار معلق چانگ سایمونز و ون راین به تغییرات قطر دانه
5-83: تغییرات دبی بار کل توفالتی به تغییرات قطر دانه
5-84: تغییرات دبی بار کل انگلوند و هانسن به تغییرات قطر دانه
5-85: تغییرات دبی بار کل ایکرز و وایت به تغییرات قطر دانه
5-86: تغییرات دبی بار کل لارسن به تغییرات قطر دانه
5-87: تغییرات بار کل شن و هیونگ به تغییرات قطر دانه
5-88: تغییرات بار کل کریم و کندی به تغییرات قطر دانه
5-89: تغییرات بار کل اینشتین به تغییرات قطر دانه
5-90: تغییرات تمام روابط بار کل به تغییرات قطر دانه
2-1: نمودار شیلدز برای آستانه حرکت
2-2: رابطه بار بستر کالینسکی
2-3: ضریب بر اساس فلوم های آزمایشگاهی با بستر ماسه ای
2-4: تعیین x بر حسب
2-5: منحنی تغییرات بر حسب نرخ انتقال بار رسوب
2-6: ضرایب تصحیح بار بستر اینشتین
2-7: منحنی تغییرات بر حسب در تابع بار بستر اینشتین
2-8: منحنی های مشخص کننده پارامترهای بی بعد روش اصلاح شده اینشتین
2-9: منحنی معادله در روش اینشتین براون
2-10: مقادیر و در تابع انتقال بار بستر باگنولد
2-11: رابطه بین سرعت سقوط نسبی و ضریب
2-12: مقادیر ضریب بر حسب پارامترهای A و Z
2-13: مقادیر ضریب بر حسب پارامترهای A و Z
2-14: تابع انتقال بار معلق بروکس
2-15: رابطه بین Z و Z1
2-16: نمودار تغییرات ضریب بر حسب و
2-17: نمودار تغییرات ضریب بر حسب و
2-18: پارامترهای و k در روش توفالتی
2-19: رابطه بین قطر الک و سرعت سقوط ذرات
2-20: تابع در روش لارسن
2-21: رابطه بین رسوبات ماسه ای و سرعت جریان بازای قطر میانه دانه های بستر و عمق جریان های مختلف در آب 60 درجه فارنهایت
2-22: اثر دمای آب و غلطت ذرات ریزدانه های معلق بر رابطه حاکم بین دبی رسوبات ماسه ای و متوسط سرعت جریان
3-1: شکل مقطع عرضی رودخانه
5-1: درصد بار بستر به معلق
این فایل در قالب ورد و قابل ویرایش در 170 صفحه می باشد .
فصل اول : مقدمه ای بر تولید برق در ایران
۱-۱ انواع نیروگاه های تولید برق ۲
۱-۲ عرضه و تقاضای انرژی برق ۶
۱-۳ تولید نیروگاه های ایران ۱۱
فصل دوم : آشنایی با نیروگاه های سیکل ترکیبی ( بخاری گازی )
۲-۱ نیروگاه های بخاری ۱۸
۲-۱-۱ مقدمه ۱۸
۲-۱-۲ سیکل ترمودینامیکی نیروگاه بخاری ۲۰
۲-۱-۳ دیگ بخار و تجهیزات جانبی آن ۲۴
۲-۲ نیروگاه گازی ۳۱
۲-۲-۱ مقدمه ۳۱
۲-۲-۲ سیکل قدرت گازی ۳۲
۲-۲-۳ تجهیزات نیروگاه گازی ۳۶
۲-۳ نیروگاه سیکل ترکیبی ۴۲
۲-۳-۱ مقدمه ۴۲
۲-۳-۲ نیروگاه چرخه ترکیبی با دیگ بخار بازیاب ۴۶
فصل سوم : مصرف داخلی نیروگاه های تولید برق
۳-۱ مقدمه ۵۳
۳-۲ سیستمهای داخلی نیروگاه سیکل ترکیبی ۵۴
۳-۳ انتخاب ولتاژ مصرف داخلی ۵۵
۳-۴ تغذیه مصرف داخلی نیروگاه ۵۷
۳-۴-۱ تغذیه از شین اصلی نیروگاه ۵۷
۳-۴-۲ تغذیه از پایانه ژنراتور ۵۹
۳-۴-۳ تغذیه مصرف داخلی با اتصال گروهی واحدها ۶۴
۳-۵ تغذیه برق اضطراری ۶۵
۳-۶ تغذیه شین DC ۶۷
۳-۷ سیستم برق اضطراری ۶۸
۳-۸ شاخص های مطرح در طراحی سیستم مصرف داخلی نیروگاه ۶۹
۳-۹ بارهای مصرفی در سیستم مصرف داخلی نیروگاه ۷۰
۳-۹-۱ انواع بارهای مصرفی تقسیم بندی آنها ۷۰
۳-۹-۲ دسته بندی بارها از لحاظ اهمیت و حساسیت ۷۱
۳-۹-۳ بررسی انواع مصرف کننده های انرژی الکتریکی ۷۳
۳-۱۰ انواع بارهای موجود در نیروگاه سیکل ترکیبی یزد ۷۶
فصل چهارم : ترانسفورماتورهای قدرت
۴-۱ مقدمه ۸۶
۴-۲ دسته بندی های مختلف ترانسفورماتور ۸۷
۴-۳ اتصالات مختلف ترانسفورماتورهای قدرت ۸۸
۴-۴ تجهیزات اساسی ترانسفورماتورهای قدرت ۹۰
۴-۵ مشخصات پلاک ترانسفورماتورها ۱۰۵
۴-۶ خصوصیات ترانسفورماتور قدرت نیروگاه ۱۱۲
فصل پنجم : محاسبات سطح مقطع کابل ها
۵-۱ کابل های نیروگاهی ۱۱۹
۵-۱-۱ کابل های فشار ضعیف و متوسط ۱۱۹
۵-۱-۲ کابل های فشار قوی ۱۲۰
۵-۲ سطح مقطع کابل ها ۱۲۱
۵-۳ اصول و شرایطی که در تعیین سطح مقطع کابل ها بکار می روند ۱۲۲
۵-۴ محاسبات سطح مقطع برای سطح ولتاژ MV ۱۲۵
۵-۵ محاسبات سطح مقطع برای سطح ولتاژ LV ۱۴۰
فصل ششم : پخش بار در شبکه داخلی نیروگاه سیکل ترکیبی یزد ۱۴۶
۶-۱ مقدمه ۱۴۷
۶-۲ مساله پخش بار ۱۴۸
۶-۳ برنامه کامپیوتری پخش بار ۱۵۰
۶-۴ اجرای برنامه پخش بار برای شبکه داخلی نیروگاه سیکل ترکیبی یزد ۱۵۵
منابع ماخذ ۱۶۷
۱ ـ کتاب تجهیزات نیروگاه ج ۲ تالیف مسعود سلطانی
۲ ـ کتاب تولید الکتریسیته و بهره برداری تالیف مسعود سلطانی
۳ ـ کتاب تولید برق در نیروگاه ها تالیف رحمت الله هوشمند
۴ ـ بررسی سیستم های قدرت تالیف گلاور و سارما
۵ ـ تئوری پخش بار ( مرکز تحقیقات نیرو )
۶ ـ آشنایی با نیروگاه های کشور ( توانیر )
۷ـ ترانسفورماتورهای سه فازه تالیف مسعود سلطانی
در میان پرکار برد ترین و مهمترین نیروگاههای متداول در جهان و ایران ، می توان از نیروگاههای حرارتی نام برد . این نوع نیروگاهها ، مبدل هایی هسنتد که انرژی نهفته در سوخت های جامد ، مایع ، گازی و یا سوخت های هسته ای را به انرژی برق تبدیل می کند .
نیروگاههای حرارتی ، طیف وسیعی از نیروگاهها را در برمی گیرند که از آن جمله می توان به نیروگاههای بخاری ، گازی ، چرخه ترکیبی ، دیزلی و هسته ای اشاره نمود . نوع بسیار متداول نیروگاههای حرارتی ، نیروگاههای بخاری می باشد . در این نوع نیروگاه با مشتمعل شدن سوخت های فسیلی ، آب سیکل ، تبدیل به بخار می شود .سپس انرژی بخاری تولیدی ، سبب چرخش توربین و در نهایت ، تولید انرژی برق می گردد . تفاوت اساسی نیروگاههای گازی با بخاری در آن است که سیال سیکل توربین گازی ، هوای محیط می باشد . اما نیروگاههای سیکل ترکیبی , متشکل از واحدهای گازی و بخاری می باشند که در آنها به منظور افزایش بازده کل حرارتی و بازیافت بخشی از انرژی باقی مانده در گازهای خروجی از توربین های گازی ، این گازها را به یک دیگ بخار بازیاب هدایت می کنند . بخار حاصل از این طریق ، توربین بخاری را به گردش در می آورد . از مهمترین نیروگاههای حرارتی می توان به نیروگاههای هسته ای ( اورانیم غنی شده ، پلوتونیم و … ) بخار با انرژی نهفته بسیار زیادی تولید می شود . با استفاده از انرژی بخار تولید شده ، توربین بخاری به چرخش در می آید و در نهایت انرژی الکتریکی تولید می شود .
در نیروگاههای برق آبی ، عامل و سیال واسطه ، جریان آب یا انرژی پتانسیل آب پشت سدها و آب بند ها است . نیروگاههای جریان رودخانه ای و نیروگاههای برق آبی از این نوع نیرگاهها هستند . از انرژی موجود در جریان آب رودخانه ها می توان در چرخاندن پرهای یک توربین آبی برای تولید انرژی مکانیکی ( و پس از آن تولید الکتریکی توسط ژنراتورها ) بهره جست . همچنین با ایجاد سدها و ذخیره سازی آب رودخانه در پشت این سدها می توان می توان از انرژی پتانسیل نهفته درآب پشت سد ( برای به چرخش در آوردن توربین ها ) نیز استفاده نمود .
در حال حاضر نیروگاههای حرارتی ، بیشترین سهم را در تولید و تامین انرژی برق مورد نیاز صنعت را بر عهده دارند . البته کشورهایی وجود دارند که سهم تولید انرژی نیروگاهای برق آبی آنها قابل توجه و یا حتی بیشتر از تولید نیروگاههای حرارتی است که در این میان ، می توان از کشورهای نروژ ، پرتغال ، سوئیس ، اتریش ، آلبانی ، کانادا ، برزیل و برخی دیگر از کشورهای آمریکای جنوبی نام برد
علاوه به نیروگاههای بخاری ، هسته ای ،گازی ، سیکل ترکیبی . آبی که کاربرد بیشتری دارند ، می توان انواع زیر را نام برد :
در این نوع نیروگاهها، نیروی محرکه ژنراتور یک موتور درو نسوز دیزلی است . امروزه از نیروگاه دیزلی به عنوان یک نیروگاه پایه ، کمتر استفاده می شود و بیشتر برای مواقع اضطراری و احتمالا برای حداکثر شبکه استفاده می گردد در حالیکه در مناطقی از ایران که به شبکه سراسری وصل نیستند ، از نیروگاههای دیزلی هم که قدرت تولیدی آنها معمولا تا ۵۰۰۰ کیلو وات می باشد ، استفاده می شود.
در بعضی از مناطق که شرایط جغرافیایی مناسبی وجود داشته باشد ، از مبادله آب بین دو منبع در سطوح مختلف ، می توان انرژی مورد نیاز را برای چرخاندن توربین ها ایجاد نمود . در این نوع نیروگاهها ، آب از منبع در سطح پائین ( که می تواند یک دریاچه باشد ) توسط پمپ هایی در ساعاتی از روز که مصرف انرژی الکتریکی پائین است به منبع بالایی فرستاده می شود . سپس در مواقعی که به انرژی الکتریکی نیاز است ، از منبع بالایی آب را توسط لوله هایی به روی پره های یک توربین آبی هدایت می کنند و بدین ترتیب انرژی الکتریکی تولید می شود .
یکی از آرزوهای بزرگ بشر ، کاربرد انرژی خورشیدی به عنوان یک منبع لایزال برای مصارف بزرگ بوده است . اشکال بزرگ در کاربرد انرژی خورشیدین متمرکز نبودن ، تناوبی بودن و ثابت نبودن مقدار انرژی ، و پائین بودن شدت تشعشع می باشد . به خاطر دانسیته پائین انرژی ، سطح لازم برای کسب انرژی قابل توجه ، بزرگ خواهد شد و به خاطر تناوبی بودن و ثابت نبودن مقدار آن ، معمولا برای انرژی خورشیدی ، یک منبع ذخیره انرژی کسب شده مورد نیاز است . همچنین به دلیل متمرکز نبودن انرژی خورشیدی ، احتیاج به تجهیزاتی برای متمرکز ساختن آن می باشد .
انرژی خورشیدی را می توان در موارد زیر مورد استفاده قرار داد . تامین انرژی هایی کم مثل گرمایش و سرمایش ساختمان ، پختن غذا ، گرم کردن آب ، استرلیزه کردن وسایل بهداشتی خشک کردن محصولات کشاورزی ، شیرین کردن آب ، تولید سوخت های شیمیایی ، احتراق مواد آلی ، تولید گاز هیدروژن ، تولید الکتریسیته به روش فتوولیتک ( باطری خورشیدی ) ، تولید بخار آب برای به چرخش در آوردن یک توربین بخار و تولید الکتریسیته و موارد دیگر .
بادهای محلی و موسمی ، حامل مقدار زیادی انرژی می باشند که مقدار آن بستگی به سرعت باد دارد . بعلاوه هر قدر سطح برخورد باد با یک جسم ، بیشتر باشد. انرژی بیشتری را میتوان به آن جسم منتقل نمود . بنابراین ، کسب انرژی قابل توجه از باد ، علاوه بر مناسب بودن سرعت باد ، به سطح بزرگ تماس با باد نیز وابسته است . استفاده از انرژی باد برای مصارف محدود و محلی مناسب است ، ولی به دلایل محدود بودن مقدار این انرژی ، ثابت نبودن ، مقدار تناوبی بودن آن و نیز محلی بودن ، نمی توان از انرژی باد به عنوان یک منبع تولید عمده انرژی برای آینده یاد نمود . امروزه در مناطقی که یک متوسط وزش باد ثابت دارند و سرعت باد در آنجا مناسب است . با نصب توربین های بادی ، انرژی الکتریکی تولید می شود . همچنین با تولید باد مصنوعی از طریق تابش خورشیدی بر روی سطح گسترده سیاه رنگ و متمرکز کردن باد ایجاد شده بر روی پره های توربین بادی نیز انرژی الکتریکی قابل ملاحظه ای تولید می شود .
یکی از منابع انرژی که به مقدار زیادی در دسترس می باشد ، انرژی زمین گرمایی ( ژئوتر مال – انرژی گرمایی داخل زمین ) است که به دو روش قابل بهره برداری می باشد .
الف) استفاده از بخار آب به صورت داغ و خشک که به طور طبیعی در زیر پوسته زمین وجود دارد .
ب) ایجاد مصنوعی بخار ، به وسیله عبور آب از روی سنگ های داغ زیر زمینی که دارای درجه حرارت زیاد و نزدیک به نقطه ذوب هستند ( این موضوع با توجه به این نکته است که در بعضی از نقاط زیر پوسته زمین در عمق ۵ تا ۶ کیلومتری می توان به درجه حرارت های تا ۳۰۰۰ درجه هم رسید . )
هم اکنون نیرگاههای متعددی از این انرژی در هردو روش الف و ب مورد استفاده قرار می گیرند .
امواج دریا به دلیل بالا و پائین رفتن مداوم و تحرک زیاد و ایجاد اختلاف ارتفاع های که گاه به چندین متر هم می رسد ، حاوی مقدار زیادی هستند . البته این انرژی به صورت پراکنده در سرتاسر سطح آب به وجود می آید . بنابراین به وسیله تجهیزات بخصوص ( که سطح بزرگی از آب را مایع می پوشانند ) می توان مقداری از این انرژی را کسب نمود و در تولید انرژی الکتریکی مورد استفاده قرار داد. البته استفاده از این انرژی هنوز در مراحل تحقیقاتی و آزمایشی خود می باشد .
در دریاها به خاطر چرخش ماه به دور زمین ، روزانه دوبار جذر و دوبار مد به وجود می آید . اختلاف ارتفاع آب در حالت جذر مد در هر نقطه بستگی به وضع قرار گرفتن ماه ، زمین و خورشید دارد و بزرگترین اختلاف ارتفاع آب در حالت جذر و مد ، معمولا در اوایل پائیز به وجود می آید برای آنکه بتوان از انرژی جذر مد استفاده نمود ، باید یک خلیج ( یا یک دریاچه مصنوعی ) را توسط سدی از دریا جدا نمود و در هنگام جذر مد از جریان آبی که متناوباً بین این دو منبع ایجاد می شود ، برای چرخاندن پره های یک توربین ( و نهایتاً تولید نیروی الکتریسته ) استفاده کرد . با توجه به محدودیتهای جغرافیایی در رابطه با استفاده از نیروی جذر و مد از این روش نمی توان به عنوان یک منبع عمده تولید انرژی در همه جا استفاده نمود .
البته در کشورهای ما ، بعضی از این نیروگاهها متداول هستند که شامل نیروگاههای بخاری ، گازی ، سیکل ترکیبی ، دیزلی ، آبی و بادی می باشند .
در این فصل بر آنیم تا به منظور آشنایی هرچه بیشتر با سیستم های تولید انرژی در ایران نگاه سریعی به وضعیت تولید انرژی توسط نیرگاهها و عرضه آن به مصرف کنندگان داشته باشیم .
این فایل در قالب ورد و قابل ویرایش در 137 صفحه می باشد .
پروژه جهت دریافت اخذ مدرک کارشناسی برق
فهرست مطالب:
مقدمه
فصل اول – شرحی بر پخش بار .
1- پخش بار
2- شین مرجع یا شناور
3- شین بار
4- شین ولتاژ کنترل شده
5- شین نیروگاهی
6- شین انتقال
فصل دوم – محاسبات ریاضی نرم افزار
1- حل معادلات جبری غیر خطی به روش نیوتن-رافسون
2- روشی برای وارون کردن ماتریس ژاکوبین
فصل سوم – معادلات حل پخش بار به روش نیوتن-رافسون
1- حل پخش بار به روش نیوتن – رافسون
فصل چهارم – تعیین الگوریتم کلی برنامه
1- الگوریتم کلی برنامه
2- الگوریتم دریافت اطلاعات در ورودی
3- الگوریتم محاسبه ماتریس ژاکوبین
4- الگوریتم مربوط به وارون ژاکوبین
5- الگوریتم مربطو به محاسبه
6- الگوریتم مربوط به محاسبه ماتریس
7-الگوریتم مربوط به ضرب وارون ژاکوبین در ماتریس
8- الگوریتم مربوط به محاسبه
9- الگوریتم تست شرط
10- الگوریتم مربوط به چاپ جوابهای مسئله در خروجی
فصل پنجم – مروری بر دستورات برنامه نویسی C++
1- انواع داده
2- متغیرها
33- تعریف متغیر
4- مقدار دادن به متغیر
5- عملگرها
6- عملگرهای محاسباتی
7- عملگرهای رابطهای
8- عملگرهای منطقی
9- عملگر Sizcof
10- ساختار تکرار for
11- ساختارتکرار While
12- ساختار تکرار do … While
13- ساختار تصمیم if
14- تابع Printf ( )
15- تابع Scanf ( )
16- تابع getch ( )
17- اشارهگرها
18- متغیرهای پویا
19- تخصیص حافظه پویا
20- برگرداندن حافظه به سیستم
21- توابع
22- تابع چگونه کار میکند
فصل ششم – تشریح و نحوی عملکرد برنامه
فصل هفتم – نرم افزار
مقدمه :
بی شک صنعت برق مهمترین و حساسترین صنایع در هر کشور محسوب میشود. بطوریکه عملکرد نادرست تولید کنندهها و سیستمهای قدرت موجب فلج شدن ساختار صنعتی ، اقتصادی ، اجتماعی و حتی سپاسی در آن جامعه خواهد شد. از زمانیکه برق کشف و تجهیزات برقی اختراع شدند. تکنولوژی با سرعت تساعدی در جهت پیشرفت شتاب گرفت. بطوریکه میتوان گفت در حدود دویست سال اخیر نود درصد از پیشرفت جامع بشری به وقوع پیوست. و شاید روزی یا هفتهای نباشد که دانشمندان سراسر جهان مطلب جدیدی در یکی از گراشیهای علم برق کشف و عنوان نکنند. و انسان قرن بیست و یکم بخش قابل توجهای از آسایش رفاه خود را مدیون حرکت الکترونها میباشد. و دانشمندان در این عرصه انسانهای سختکوش بودند که همه تلاش خود را برای افراد راحت طلب بکار بستند.
در آغاز شکل گیری شبکههای برقی ، مولدها ، برق را بصورت جریان مستقیم تولید میکردند و در مساحتهای محدود و کوچک از آنها بهرهمند میشد. و این شبکهها بصورت کوچک و محدود استفاده میشد. با افزایش تقاضا در زمینه استفاده از انرژی الکتریکی دیگر این شبکههای کوچک پاسخگوی نیاز مصرف کنندهها نبود و میبایست سیستمهای برقرسانی مساحت بیشتری را تحت پوشش خود قرار میدادند. از طرفی برای تولید نیز محدودیتهایی موجود بود که اجازه تولید انرژی الکتریکی را در هر نقطه دلخواه به مهندسین برق نمیداد. زیرا که نیروگاهها میبایست در محلهایی احداث میشد که انرژی بطور طبیعی یافت میشد. انرژیهای طبیعی مثل : آب ، باد ، ذغال سنگ وغیره بنابراین نیروگاهها را میبایست در جاهایی احداث میکردند که یا در آنجا آب و یا باد و یا ذغال سنگ و دیگر انرژیهای سوختی موجود بود. بدین ترتیب نظریه انتقال انرژی الکتریکی از محل تولید انرژی تا محل مصرف پیش آمد. این انتقال نیز توسط برق جریان مستقیم امکانپذیر نبود. زیرا ولتاژ در طول خط انتقال افت می کرد و در محل مصرف دیگر عملاً ولتاژی باقی نمیماند. بنابراین مهندسین صنعت برق تصمیم گرفتند که انرژی الکتریکی را بطور AC تولید کنند تا قابلیت انتقال داشته باشد. و این عمل را نیز توسط ترانسفورماتورها انجام دادند. ترانسفورماتورها میتوانستند ولتاژ را تا اندازه قابل ملاحظهای بالا برده و امکان انتقال را فراهم آورند. مزیت دیگری که ترانسفورماتورها به سیستمهای قدرت بخشیدند. این بود که با بالا بردن سطح ولتاژ ، به همان نسبت نیز جریان را پائین می آوردند ، بدین ترتیب سطح مقطع هادیهای خطوط انتقال کمتر میشد و بطور کلی میتوانستیم کلیه تجهیزات را به وسیله جریان پائین سایز نماییم. و این امر نیز از دیدگاه اقتصادی بسیار قابل توجه مینمود.
بدین ترتیب شبکههای قدرت AC شکل گرفت و خطوط انتقال و پستهای متعددی نیز برای انتقال انرژی الکتریکی در نظر گرفته شد. و برای تأمین پیوسته انرژی این شبکهها به یکدیگر متصل شدند و تا امروه نیز در حال گسترش و توسعه میباشند. هرچه سیستمهای قدر الکتریکی بزرگتر میشد بحث بهرهبرداری و پایداری سیستم نیز پیچیدهتر نشان میداد. و در این راستا مراکز کنترل و بهره بردار از سیستمهای قدرت میبایست در هر لحظه از ولتاژها و توانهای تمامی پستها و توانهای جاری شده در خطوط انتقال آگاهی مییافتند. تا بتوانند انرژی را بطور استاندارد و سالم تا محل مصرف انتقال و سپس توزیع کنند. این امر مستلزم حل معادلاتی بود که تعداد مجهولات از تعداد معلومات بیشتر بود. حل معادلاتی که مجهولات بیشتری از معلومات آن دارد نیز فقط در فضای ریاضیاتی با محاسبات عدد امکانپذیر است که در تکرارهای مکرر قابل دستیابی است. در صنعت برق تعیین ولتاژها و زوایای ولتاژها و توانهای اکتیو و راکتیو در پستها و نیروگاهها را با عنوان پخش بار (load flow) مطرح میشود.
پخش بار در سیستمهای قدرت دارای روشهای متنوعی میباشد که عبارتند از : روش نیوتن 0 رافسون ، روش گوس – سایدل ، روش Decaupled load flow و روش Fast decaupled load flow که هر یک دارای مزیتهای خاص خود میباشد. روش نیوتن- رافسون یک روش دقیق با تکرارهای کم میباشد که جوابها زود همگرا میشود ، اما دارای محاسبات مشکلی است. روش گوس – سایدل دقت کمتری نسبت به نیوتن رافسون دارد و تعداد و تکرارها نیز بیشتر است اما محاسبات سادهتری دارد. روش Decaupled load flow یک روش تقریبی در محاسبات پخش بار است و دارای سرعت بالایی میباشد ، و زمانی که نیاز به پیدا کردن توان اکتیو انتقالی خط مطرح است مورد استفاده میباشد. روش Fast decaupled load flow نیز یک روش تقریبی است که از سرعت بالایی نیست به نیوتن رافسون و گوس سایدل برخوردار میباشد. و از روش Decaupled load flow نیز دقیقتر میباشد. اما مورد بحث این پایاننامه روش نیوتن – رافسون است که در ادامه به آن میپردازیم.