یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

102 ص word - پیاده سازی بلادرنگ کدک صحبت استاندارد G.728 بر روی پردازنده TMS320C5402

اختصاصی از یارا فایل 102 ص word - پیاده سازی بلادرنگ کدک صحبت استاندارد G.728 بر روی پردازنده TMS320C5402 دانلود با لینک مستقیم و پر سرعت .

102 ص word - پیاده سازی بلادرنگ کدک صحبت استاندارد G.728 بر روی پردازنده TMS320C5402


102 ص word - پیاده سازی بلادرنگ کدک صحبت استاندارد G.728  بر روی پردازنده TMS320C5402

102 صفحه پژوهش در فرمت وورد

کدک صحبت استاندارد G.728 ، یک کدک کم تاخیر است که صحبت با کیفیت عالی را در نرخ بیت 16 kbps ارائه می دهد و برای شبکه های تلفن ماهواره ای و اینترنت و موبایل که به تاخیر زیاد حساس هستند ، مناسب است. در این رساله به پیاده سازی بلادرنگ اینکدر و دیکدر  G.728 بصورت دوطرفه کامل ( Full Duplex ) بر روی پردازنده TMS320C5402 می پردازیم .

روشی ترکیبی برای برنامه نویسی TMS ارائه می شود که در آن  زمان وپیچیدگی برنامه نویسی نسبت به برنامه نویسی دستی به 30%  کاهش می یابد . در این روش پس از برنامه نویسی           و  شبیه سازی ممیزثابت الگوریتم کدک به زبان C ، با استفاده از نرم افزار                                ( Code Composer Studio ) CCS ، برنامه به زبان اسمبلی ترجمه شده و بهینه سازی دستی در کل کد اسمبلی صورت می گیرد . سپس بعضی از توابع مهم برنامه از نظر MIPS ، بصورت دستی به زبان اسمبلی بازنویسی می شوند تا برنامه بصورت بلادرنگ قابل اجرا گردد . در پایان                  نتایج این پیاده سازی ارائه می شود .

 

 

 

 

 

فهرست

- مقدمه                                             4

فصل 1 : بررسی و مدل سازی سیگنال صحبت                        

    1-1- معرفی سیگنال صحبت                               6

    1-2- مدل سازی پیشگویی خطی                            10

         1-2-1- پنجره کردن سیگنال صحبت                   11

         1-2-2- پیش تاکید سیگنال صحبت                    13

         1-2-3- تخمین پارامترهای LPC                                              14

 

فصل 2 : روش ها و استانداردهای کدینگ صحبت

    2-1- مقدمه                                      15

    2-2- روش های کدینگ                                   19

         2-2-1- کدرهای شکل موج                       21

         2-2-2- کدرهای صوتی                              22       2-2-3- کدرهای مختلط                             24

         الف- کدرهای مختلط حوزه فرکانس                   27

         ب- کدرهای مختلط حوزه زمان                       29

 

فصل 3 : کدر کم تاخیر LD-CELP                       

    3-1- مقدمه                                      34

    3-2- بررسی کدرکم تاخیر LD-CELP                      36

         3-2-1- LPC معکوس مرتبه بالا                  39

         3-2-2- فیلتر وزنی شنیداری                       42

         3-2-3- ساختار کتاب کد                       42

         3-2-3-1- جستجوی کتاب کد                         43

         3-2-4- شبه دیکدر                            45

         3-2-5- پست فیلتر                            46

فصل 4 : شبیه سازی ممیزثابت الگوریتم به زبان C                   

    4-1- مقدمه                                       49

    4-2- ویژگی های برنامه نویسی ممیزثابت                         50

    4-3- ساده سازی محاسبات الگوریتم                          53

         4-3-1- تطبیق دهنده بهره                         54

         4-3-2- محاسبه لگاریتم معکوس                          58

    4-4- روندنمای برنامه                                 59

         4-4-1- اینکدر                               63

         4-4-2- دیکدر                                69

فصل 5 : پیاده سازی الگوریتم برروی DSP          

    5-1- مقدمه                                      74

    5-2- مروری بر پیاده سازی بلادرنگ                          75

    5-3- چیپ های DSP                                76

         5-3-1- DSP های ممیزثابت                         77

         5-3-2- مروری بر DSP های خانواده TMS320          78

         5-3-2-1- معرفی سری TMS320C54x               79

    5-4- توسعه برنامه بلادرنگ                             81

    5-5- اجرای برنامه روی برد توسعه گر C5402 DSK                 82

         5-5-1- بکارگیری ابزارهای توسعه نرم افزار                 84

        5-5-2- استفاده از نرم افزارCCS                      86

        5-5-3- نتایج پیاده سازی                         94

    5-6- نتیجه گیری و پیشنهاد                          97

- ضمائم

   - ضمیمه (الف) : دیسکت برنامه های شبیه سازی ممیز ثابت به زبان C و

                          پیاده سازی کدک به زبان اسمبلی                                                                                        - ضمیمه (ب) : مقایسه برنامه نویسی C و اسمبلی                          98

- مراجع                                         103

 

 

 

 

 

 

 

 

 - مقدمه

امروزه در عصر ارتباطات و گسترش روزافزون استفاده از شبکه های تلفن ،موبایل و اینترنت در جهان ومحدودیت پهنای باند در شبکه های مخابراتی ، کدینگ و فشرده سازی صحبت امری اجتناب ناپذیر است . در چند دهه اخیر روشهای کدینگ مختلفی پدیدآمده اند ولی بهترین و پرکاربردترین آنها کدک های آنالیزباسنتز هستند که توسط Atal & Remedeدر سال 1982 معرفی شدند [2] . اخیرا مناسبترین الگوریتم برای کدینگ صحبت با کیفیت خوب در نرخ بیت های پائین و زیر 16 kbps ، روش پیشگویی خطی باتحریک کد (CELP) می باشد که در سال 1985 توسط Schroeder & Atal معرفی شد [8] و تا کنون چندین استاندارد مهم کدینگ صحبت بر اساس CELP تعریف شده اند .

در سال 1988 CCITT برنامه ای برای استانداردسازی یک کدک 16 kbps با تاخیراندک و      کیفیت بالا در برابر خطاهای کانال آغاز نمود و برای آن کاربردهای زیادی همچون شبکه PSTN ،ISDN ،تلفن تصویری و غیره در نظر گرفت . این کدک در سال 1992 توسط Chen et al.    تحت عنوان LD-CELP معرفی شد[6] و بصورت استاندارد G.728 در آمد[9] و در سال 1994 مشخصات ممیز ثابت این کدک توسط ITU ارائه شد[10] . با توجه به کیفیت بالای این کدک که در آن صحبت سنتزشده از صحبت اولیه تقریبا غیرقابل تشخیص است  و کاربردهای آن در شبکه های تلفن و اینترنت و ماهواره ای در این گزارش به پیاده سازی این کدک می پردازیم .

متن کامل در فایل دانلودی 


دانلود با لینک مستقیم


102 ص word - پیاده سازی بلادرنگ کدک صحبت استاندارد G.728 بر روی پردازنده TMS320C5402

سیستم عاملهای بلادرنگ

اختصاصی از یارا فایل سیستم عاملهای بلادرنگ دانلود با لینک مستقیم و پر سرعت .

فرمت :WORD                                                     تعداد صفحه :80

فهرست مطالب:

·        فصل اول :  زمانبندی بلادرنگ

مقدمه........................................... 2

مشخصات سیستم های بلادرنگ......................... 3

زمانبندی بلادرنگ................................. 8

رویکردهای ایستای مبتنی بر جدول................. 10

رویکردهای ایستای مبتنی بر اولویت و با قبضه کردن 10

رویکردهای پویا بر اساس برنامه ریزی............. 10

رویکردهای پویا با بهترین کوشش.................. 11

زمانبندی ایستا مبتنی بر جدول................... 11

زمانبندی ایستای مبتنی بر اولویت و با قبضه کردن. 11

زمانبند مهلت زمانی............................. 12

زمانبندی Linux  ................................ 19

زمانبندی Unix SVR4............................. 21

·        فصل دوم : الگوریتم های برنامه ریزی و حمایت سیستم های اجرایی برای سیستم های بلادرنگ

خلاصه........................................... 26

برنامه ریزی بلادرنگ............................. 29

متریک های اجرا در سیستم های بلادرنگ............. 30

الگوهای برنامه ریزی............................ 32

الگوریتمهای برنامه ریزی برای این الگوها........ 32

برنامه ریزی ثابت Table –Driven   .................. 36

برنامه ریزی priority driven preemptive   ............ 37

برنامه ریزی دینامیک ........................... 39

برنامه ریزی Best –Effort  دینامیک................. 40

موضوعات برنامه ریزی مهم........................ 41

برنامه ریزی با محدودیتهای  توان خطا............ 41

برنامه ریزی با احیای منابع..................... 43

سیستم اجرایی  بلادرنگ .......................... 43

هسته های کوچک ، سریع و اختصاصی................. 44

توسعه های زمان واقعی برای سیستم های اجرای بازرگانی 46

سیستم های اجرای تحقیق.......................... 48

هسته MARS..................................... 50

هسته SPRING.................................... 50

هستهMARUTI .................................... 51

هسته ARTS ..................................... 51

·        فصل سوم :  بررسی ارتباط میان اجزای یک سیستم جامع بلادرنگ

خلاصه........................................... 54

شرح عملگرهای بهبودیافته........................ 60

تشریح مطالعات تجربی............................ 67

فصل چهارم : منابع.............................. 70

                                                                                                                                          

           

 

فهرست جدول ها و شکلها :

 

شکل 1 – 1 : زمانبندی یک فرایند بلادرنگ-------------------9

شکل 1 – 2 : زمانبندی وظیفه های بلادرنگ متناوب با مهلتهای زمانی کامل شدن-----------------------------------------------16

شکل 1 – 3 : زمانبندی وظیفه های بلادرنگ نامتناوب با مهلتهای زمانی در شروع----------------------------------------------18

شکل 1 – 4 : مثالی از زمانبندی Linux----------------------21

 شکل 1 – 5: طبقه های اولویت در SVR4 --------------------23

جدول 1 -1 : اطلاعات اجرای دو وظیفه متناوب-----------------16

جدول1 – 2: اطلاعات اجرای پنج وظیفه نامتناوب---------------19

شکل 3– 1: معماری سیستم جامع---------------------------57

شکل 3 – 2 : پروتکل ارتباط RS- 232C ----------------------58

شکل 3 – 3: خطای checksum ----------------------------60

شکل 3 – 4 : زمان تزریق خطا------------------------------62

شکل 3 – 5 : عملگرهای  جهش یافته-------------------------65

شکل 3 – 6 : مثالی از CRM ------------------------------66

شکل 3 – 7 : مثالی از CRH ------------------------------66

جدول 3 – 1: رابط میان RTOS  و برنامه---------------------59

جدول 3 – 2 : محل تزریق خطا----------------------------63

جدول 3 – 3 : RTOS  و برنامه های کاربردی -----------------68

جدول 3 – 4 : تعداد رابطهای بین RTOS  و برنامه--------------69

مقدمه:

 

مهمترین کاربرد سیستمهای بلادرنگ در رابطه با عملیات کنترل پردازش است . خاصیت مهم سیستم عاملهای بلادرنگ این است که هر فعل و انفعال با کامپیوتر بایستی یک پاسخ در مدت زمانی که از قبل تعیین شده است دریافت دارد . سیستم بایستی بتواند این زمان پاسخ را گارانتی بکند (عواقب زمان پاسخ بد در رابطه با سیستمی که یک هواپیما و یا یک کارخانه شیمیایی را کنترل میکند را میتوان براحتی تصور کرد ) . مسئله زمان پاسخ  در عمل به این معناست که معمولاً نرم افزار بصورت خاص-منظور است و به کاربرد بخصوصی اختصاص یافته است . دستگاههای جنبی چنین سیستمهایی نیز به احتمال قوی دستگاههای بخصوصی هستند . مثلاً ممکن است که از وسایل حس کننده که با سیگنالهای آنالوگ عمل می کنند به جای ترمینالهای عادی استفاده شوند

مشخصات سیستمهای عامل بلادرنگ:

سیستمهای عامل بلادرنگ را میتوان با داشتن ملزومات یگانه در پنج حوزه عمومی زیر مشخص نمود:

·                  قطعی بودن

·                  پاسخ دهی

·                  کنترل کاربر

·                  قابلیت اطمینان

·                  نرمش با خطا

سیستم عاملی قطعی است که عملیات خود را در زمانهای ثابت یا فواصل زمانی از پیش تعیین شده ، انجام دهد. وقتی چند فرایند در رقابت برای منابع و زمان پردازنده هستند ، هیچ سیستمی نمی تواند قطعی باشد. در یک سیستم عامل بلادرنگ ، درخواستهای فرایند برای خدمت توسط رخدادها و زمانبندی های خارجی اعمال می شود. میزان پاسخگویی سیستم عامل به درخواستها ، اولاً به سرعتی که می تواند به وقفه ها پاسخ دهد و ثانیاً به اینکه آیا سیستم ظرفیت کافی برای اداره تمام درخواستها ، در زمان معلوم دارد یا خیر، وابسته است .

یک معیار مفید برای قابلیت عملکرد قطعی سیستم عامل، حداکثر تأخیر از زمان ورود یک وقفه دستگاه با اولویت بالا ، تا زمان شروع خدمت است . در سیستم های عامل غیر بلا درنگ ، این تأخیر ممکن است در محدوده دهها تا صدها میلی ثانیه باشد ، در حالیکه در یک سیستم عامل بلادرنگ ممکن است این تأخیر حد بالایی از محدوده چند میکرو ثانیه تا یک میلی ثانیه داشته باشد .

یک مشخصه مربوط ولی مجزا ، پاسخ دهی است. قطعی بودن درباره این است که سیستم عامل پس از تصدیق ، چه مدت صرف خدمت دادن به وقفه می نماید . موارد پاسخ دهی عبارتند از :

1. مقدار زمان لازم برای اداره اولیه وقفه و شروع به اجرای روال خدماتی وقفه . اگر برای اجرای روال خدماتی وقفه نیاز به تغییر متن باشد ، تأخیر بیش از حالتی است که می توانست روال خدماتی وقفه در متن فرایند جاری اجرا گردد .

2. مقدار زمان لازم برای اجرای روال خدماتی وقفه. معمولاً این زمان بستگی به سخت افزار دارد.

3. تأثیر تو در تو بودن وقفه ها . اگر یک روال خدماتی وقفه با ورود وقفه دیگری دچار وقفه شود، خدمت مربوط به آن دچار تأخیر میگردد.

قطعی بودن و پاسخ دهی به همراه هم ، زمان پاسخ به رخدادهای خارجی را تعیین می کنند. ویژگی زمان پاسخ در سیستم های بلادرنگ بسیار حساس است ، زیرا چنین سیستم هایی باید نیازهای زمانی اعمال شده توسط افراد ، دستگاهها و جریان داده ها در خارج از سیستم را رعایت کنند.

عموماً کنترل کاربر در یک سیستم بلادرنگ بسیار وسیع تر از کنترل کاربر در سیستم عامل عادی است .

در سیستم عامل عادی، کاربر یا هیچ گونه کنترلی بر عمل زمانبندی ندارد یا فقط می تواند رهنمونهای کلی ارائه کند. مثلاً کاربران را از نظر اولویت طبقه بندی نماید . ولی در یک سیستم بلادرنگ لازم است به کاربر اجازه کنترل دقیق اولویت وظیفه داده شود. کاربر باید بتواند میان وظیفه های سخت و نرم تفاوت قائل شود و اولویتهای نسبی در هر طبقه را تعیین نماید . همچنین یک سیستم بلادرنگ به کاربر اجازه می دهد تا مشخصاتی مثل استفاده از صفحه بندی یا مبادله فرا یند ، کدام فرایندها باید در حافظه اصلی مقیم باشند ، کدام الگوریتم های انتقال از دیسک به کار گرفته شوند و اینکه فرایندهای در اولویتهای متفاوت چه حقوقی داشته باشند را تعیین نماید . 

 


دانلود با لینک مستقیم


سیستم عاملهای بلادرنگ

دانلود مقاله سیستم عاملهای بلادرنگ

اختصاصی از یارا فایل دانلود مقاله سیستم عاملهای بلادرنگ دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله سیستم عاملهای بلادرنگ


دانلود مقاله سیستم عاملهای بلادرنگ

 

تعداد صفحات : 84 صفحه       -      

قالب بندی :  word       

 

 

 

مقدمه:

 

مهمترین کاربرد سیستمهای بلادرنگ در رابطه با عملیات کنترل پردازش است . خاصیت مهم سیستم عاملهای بلادرنگ این است که هر فعل و انفعال با کامپیوتر بایستی یک پاسخ در مدت زمانی که از قبل تعیین شده است دریافت دارد . سیستم بایستی بتواند این زمان پاسخ را گارانتی بکند (عواقب زمان پاسخ بد در رابطه با سیستمی که یک هواپیما و یا یک کارخانه شیمیایی را کنترل میکند را میتوان براحتی تصور کرد ) . مسئله زمان پاسخ  در عمل به این معناست که معمولاً نرم افزار بصورت خاص-منظور است و به کاربرد بخصوصی اختصاص یافته است . دستگاههای جنبی چنین سیستمهایی نیز به احتمال قوی دستگاههای بخصوصی هستند . مثلاً ممکن است که از وسایل حس کننده که با سیگنالهای آنالوگ عمل می کنند به جای ترمینالهای عادی استفاده شوند

 

مشخصات سیستمهای عامل بلادرنگ: سیستمهای عامل بلادرنگ را میتوان با داشتن ملزومات یگانه در پنج حوزه عمومی زیر مشخص نمود: ·                  قطعی بودن ·                  پاسخ دهی ·                  کنترل کاربر ·                  قابلیت اطمینان ·                  نرمش با خطا سیستم عاملی قطعی است که عملیات خود را در زمانهای ثابت یا فواصل زمانی از پیش تعیین شده ، انجام دهد. وقتی چند فرایند در رقابت برای منابع و زمان پردازنده هستند ، هیچ سیستمی نمی تواند قطعی باشد. در یک سیستم عامل بلادرنگ ، درخواستهای فرایند برای خدمت توسط رخدادها و زمانبندی های خارجی اعمال می شود. میزان پاسخگویی سیستم عامل به درخواستها ، اولاً به سرعتی که می تواند به وقفه ها پاسخ دهد و ثانیاً به اینکه آیا سیستم ظرفیت کافی برای اداره تمام درخواستها ، در زمان معلوم دارد یا خیر، وابسته است . یک معیار مفید برای قابلیت عملکرد قطعی سیستم عامل، حداکثر تأخیر از زمان ورود یک وقفه دستگاه با اولویت بالا ، تا زمان شروع خدمت است . در سیستم های عامل غیر بلا درنگ ، این تأخیر ممکن است در محدوده دهها تا صدها میلی ثانیه باشد ، در حالیکه در یک سیستم عامل بلادرنگ ممکن است این تأخیر حد بالایی از محدوده چند میکرو ثانیه تا یک میلی ثانیه داشته باشد . یک مشخصه مربوط ولی مجزا ، پاسخ دهی است. قطعی بودن درباره این است که سیستم عامل پس از تصدیق ، چه مدت صرف خدمت دادن به وقفه می نماید . موارد پاسخ دهی عبارتند از : 1. مقدار زمان لازم برای اداره اولیه وقفه و شروع به اجرای روال خدماتی وقفه . اگر برای اجرای روال خدماتی وقفه نیاز به تغییر متن باشد ، تأخیر بیش از حالتی است که می توانست روال خدماتی وقفه در متن فرایند جاری اجرا گردد . 2. مقدار زمان لازم برای اجرای روال خدماتی وقفه. معمولاً این زمان بستگی به سخت افزار دارد. 3. تأثیر تو در تو بودن وقفه ها . اگر یک روال خدماتی وقفه با ورود وقفه دیگری دچار وقفه شود، خدمت مربوط به آن دچار تأخیر میگردد. قطعی بودن و پاسخ دهی به همراه هم ، زمان پاسخ به رخدادهای خارجی را تعیین می کنند. ویژگی زمان پاسخ در سیستم های بلادرنگ بسیار حساس است ، زیرا چنین سیستم هایی باید نیازهای زمانی اعمال شده توسط افراد ، دستگاهها و جریان داده ها در خارج از سیستم را رعایت کنند. عموماً کنترل کاربر در یک سیستم بلادرنگ بسیار وسیع تر از کنترل کاربر در سیستم عامل عادی است . در سیستم عامل عادی، کاربر یا هیچ گونه کنترلی بر عمل زمانبندی ندارد یا فقط می تواند رهنمونهای کلی ارائه کند. مثلاً کاربران را از نظر اولویت طبقه بندی نماید . ولی در یک سیستم بلادرنگ لازم است به کاربر اجازه کنترل دقیق اولویت وظیفه داده شود. کاربر باید بتواند میان وظیفه های سخت و نرم تفاوت قائل شود و اولویتهای نسبی در هر طبقه را تعیین نماید . همچنین یک سیستم بلادرنگ به کاربر اجازه می دهد تا مشخصاتی مثل استفاده از صفحه بندی یا مبادله فرا یند ، کدام فرایندها باید در حافظه اصلی مقیم باشند ، کدام الگوریتم های انتقال از دیسک به کار گرفته شوند و اینکه فرایندهای در اولویتهای متفاوت چه حقوقی داشته باشند را تعیین نماید . قابلیت اطمینان : قابلیت اطمینان نوعاً در سیستم های بلادرنگ بسیار مهمتر از سیستم های عادی است . یک خرابی گذرا در سیستم غیر بلادرنگ ممکن است تا تعمیر یا تعویض آن ، منجر به سطح خدمت دهی پایین تر گردد . ولی در سیستم بلادرنگی که در حال پاسخ دهی و کنترل رخدادها در زمان حقیقی است ، از دست رفتن یا کاهش کارآمدی یک پردازنده می تواند عواقب فاجعه آمیزی (از ضرر مادی گرفته تا آسیب دیدگی کلی دستگاهها یا حتی ازدست رفتن جانها  )داشته باشد. همانگونه که در سایر موارد نیز دیده می شود . تفاوت سیستم عامل بلادرنگ و غیر بلادرنگ در یک درجه است . حتی یک سیستم بلادرنگ نیز باید به گونه ای طراحی شود که به حالات مختلف خرابی ، پاسخ دهد. نرمش با خطا:  به مشخصه ای اشاره دارد که با خرابی سیستم ، تا حد ممکن قابلیتها و داده های آن حفظ شود . مثلاً یک سیستم سنتی UNIX ، وقتی خراب شدن داده ها در هسته سیستم عامل را تشخیص دهد ، یک پیام شکست بر روی میز فرمان متصدی ارائه کرده ، محتویات حافظه را برای تجزیه و تحلیل بعدی شکست ، بر روی دیسک تخلیه می کند و به اجرای سیستم پایان می دهد . در مقابل، یک سیستم بلادرنگ سعی بر این دارد که یا اشکال را تصحیح کندیا در حالیکه به اجرا ادامه می دهد تأثیرات اشکال را حداقل سازد . نوعاً ، سیستم به کاربر یا فرایند کاربر اطلاع می دهد که باید عمل اشکال زدایی را آغاز کند و سپس به عملیات خود (احتمالاًدر سطح پایین تری از خدمت دهی ) ادامه می دهد. در صورتی که خاموش کردن سیستم لازم باشد ، برای حفظ سازگاری پرونده و داده ها نیز تلاش خواهد شد. یکی از موارد مهم نرمش با خطا به عنوان پایداری شناخته می شود. یک سیستم بلادرنگ پایدار در مواردی که ارضای تمام مهلتهای زمانی وظیفه غیر ممکن باشد ، مهلتهای زمانی وظیفه های بسیار حساس و اولویت بالاتر را (حتی با عدم رعایت مهلتهای زمانی وظیفه های با حساسیت کمتر  ) برآورده می کند. برای برآوردن نیازهای ذکر شده ، سیستمهای بلادرنگ امروزی نوعاً شامل خصوصیات زیر هستند : ·       تعویض سریع فرایند یا نخ ·       اندازه کوچک ·       قابلیت پاسخ سریع به وقفه های خارجی ·       عملکرد چند وظیفه ای با ابزارهای ارتباط بین فرایندها ،از قبیل راهنماها ، علائم و رخدادها ·       استفاده از پرونده های ترتیبی خاصکه می توانند داده ها را با نرخ سریعی انباشته کنند.

 

 


دانلود با لینک مستقیم


دانلود مقاله سیستم عاملهای بلادرنگ

دانلود تحقیق پردازش پیوسته و بلادرنگ اطلاعات ورودى

اختصاصی از یارا فایل دانلود تحقیق پردازش پیوسته و بلادرنگ اطلاعات ورودى دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق پردازش پیوسته و بلادرنگ اطلاعات ورودى


دانلود تحقیق پردازش پیوسته و بلادرنگ اطلاعات ورودى

در این روش پردازش اطلاعات، اطلاعات ورودى از طریق صفحه کلید پایانه‌هاى پیوسته وارد و ویرایش مى‌شود و بلافاصله پس از اجراء کنترل‌هاى ویرایشى پردازش نهائى صورت گرفته و فایل اصلى یا بانک اطلاعاتى به هنگام‌ مى‌رسد و گزارش به هنگام‌رسانى پیش‌بینى شده نیز روى صفحه تلویزیونى پایانه نمایان مى‌گردد. در این روش، اطلاعات ورودى مى‌تواند با استفاده از اطلاعات فایل اصلى و کنترل‌هاى منطقی، به‌طور کامل ویرایش شود و اصلاحات لازم توسط وارد کننده اطلاعات انجام گیرد.   
 
 
 سادهَ‌ترین نوع پردازش بلادرنگ اطلاعات، حالتى است که اطلاعات ورودى نیازى به ویرایش ندارد. براى مثال محاسبه استهلاک ماشین‌آلات براى یک دوره معین بر اساس اطلاعات موجود در فایل اموال و دارائى‌هاى منقول. میزان یا نرخ استهلاک بر اساس جداول موجود در برنامه یا فایل مشخص است و دوره زمانى نیز در اول کار به برنامه داده مى‌شود.   
 
 
 در برخى از موارد، اگرچه اطلاعات بلادرنگ ویرایش و پردازش مى‌شود اما فایل اصلى به هنگام نمى‌رسد. اطلاعات جاری، پس از پردازش، بدون دسته‌بندى شدن و کنترل دسته‌اى در انباره‌هاى اطلاعات نگهدارى مى‌شود و در زمان‌هاى مشخص براى به هنگام رساندن فایل اصلى مورد استفاده قرار مى‌گیرد.   
 
 
 به هنگام‌رسانى فایل اصلى ممکن است هم‌زمان با پردازش اطلاعات جارى نیز صورت پذیرد اما نسخه اصلى فایل اصلی، به هنگام نرسد، بلکه یک نسخه دیگر از فایل اصلى به‌طور موقت به هنگام برسد و تمام اطلاعات جارى ورودى براى به هنگام‌رسانى نسخه اصلى فایل اصلى نگهدارى و در زمان‌هاى مشخصى از آن استفاده شود. پس از تطبیق دو نسخه به هنگام شده فایل اصلى با یکدیگر و بررسى مغایرات احتمالی، اطمینان بیشترى در مورد عملیات به‌دست مى‌آید و کار با نسخه جدیدى از فایل اصلى ادامه مى‌یابد. پردازش پیوسته بلادرنگ کامل اطلاعات، حالتى است که نه تنها اطلاعات ورودى بلافاصله ویرایش و پردازش شود بلکه اطلاعات فایل‌هاى اصلى نیز بلادرنگ به هنگام برسد.   
 
 
 (در این روش پردازش، اگر پیش‌بینى‌هاى مناسبى به‌عمل نیاید نه تنها جنبه کنترل و حفاظت اطلاعات در مخاطره است بلکه زنجیره عطف اسناد نیز قابل ردیابى نخواهد بود. براى نمونه اگر در یک سیستم ساده کنترل موجود یانبار بتوان از طریق پایانه‌ها اطلاعات ورود و خروج کالا را وارد و اطلاعات اصلى را بدون اینکه سوابقى از اطلاعات ورودى باقى بماند به هنگام رساند، راه سوءاستفاده کاملاً باز خواهد بود. به‌علاوه اگر اشکالى در فایل اصلى به‌وجود آید (مثلاً دیسک خراب شود) هیچ سابقه‌اى از موجودى‌ها وجود ندارد و بازسازى فایل اصلى غیرممکن خواهد بود. در روش پردازش بلادرنگ اطلاعات، در مرحله پذیرش اطلاعات ورودى کنترل‌هاى مناسبى باید در مورد مجاز بودن وارد کننده اطلاعات و تکمیل بودن اطلاعات ورودى به‌عمل آید.   
 
 
 (اطلاعات پذیرفته شده باید به‌صورت مستقل و با حفظ مشخصات وارد کننده اطلاعات و تاریخ و زنجیره عطف لازم نگهدارى شود. براى اطمینان از ایمنى اطلاعات باید رد فواصل زمانى مشخص، از فایل اصلی، نسخه‌بردارى شود. بعد از هر نسخه‌برداری، اطلاعات ورودى که براى به هنگام‌رسانى فایل اصلى استفاده مى‌شود. باید روى فایل مستقلى ثبت شود تا در صورت ایجاد اشکال یا اختلال در فایل اصلی، بتوان (با استفاده از نسخه قبلى و اطلاعات ورودى از زمان اخذ آن نسخه تا زمان بروز اشکال) فایل اصلى را مجدداً بازسازى کرد. اطلاعات ورودى باید شامل اطلاعات لازم براى کنترل اساسى باشد. براى مثال، باید بتوان مجموع کالاى صادره از انبار را با مجموع فروش یا مصرف، و مجموع خرید کالا را با جمع کالاى وارد به انبار تطبیق کرد.   
 

 

 

 

شامل 17 صفحه Wrod


دانلود با لینک مستقیم


دانلود تحقیق پردازش پیوسته و بلادرنگ اطلاعات ورودى

طراحی سیمولاتور بلادرنگ توربین بخار گاز همراه با سیستم کنترل گسترده DCS

اختصاصی از یارا فایل طراحی سیمولاتور بلادرنگ توربین بخار گاز همراه با سیستم کنترل گسترده DCS دانلود با لینک مستقیم و پرسرعت .

طراحی سیمولاتور بلادرنگ توربین بخار گاز همراه با سیستم کنترل گسترده DCS


پایان نامه ارشد برق طراحی سیمولاتور بلادرنگ توربین بخار گاز همراه با سیستم کنترل گسترده DCS
طراحی سیمولاتور بلادرنگ توربین بخار گاز همراه با سیستم کنترل گسترده DCS

Steam / Gas Turbine Real time Simulator Based on
Distributed control system
 
 
 

چکیده:

ساخت سیمولاتور گازی یکی از دغدغه های مهم سازندگان و بهره برداران نیروگاه های گازی بوده و هست که شرکت مپنا نیز به عنوان اولین متولی ساخت نیروگاه های با ظرفیت بالا در کشور نیز از این قاعده مستثنی نبوده است. در این پایان نامه با استفاده از علم شناسایی سیستم ها از روش تحلیلی و همچنین از روش جعبه سیاه به این امر مهم پرداخته می شود. شناسایی شامل مدل گاورنر و مدل پلنت می باشد. مدلسازی گاورنر با استفاده از منطق پیاده شده بر روی سخت افزار و نرم افزار SYMADIN به صورت تحلیلی و مدل مربوط به پلنت با استفاده از علم شناسایی سیستم و روش جعبه سیاه صورت گرفته و نتایج شبیه سازی روی نیروگاه V94.2 به صورت یک شبیه ساز، ساخت زیمنس اجرا شده است. هدف ما در این پایان نامه این است که به جای استفاده از یک مدل پیچیده کلی برای تمام مودهای کاری از جمله مودهای راه اندازی، سرعت و بار، برحسب شرایط آب و هوایی و میزان بار، مودهای کنترل دمای اگزوز، کنترل حد توان مکانیکی توربین و مود کنترل خروج بار با تشخیص صحیح هریک از این مودها به مدلسازی هریک از این مودها به صورت جداگانه پرداخته می شود تا مدل به دست آمده هم ساده تر و هم از دقت بالاتری برخوردار باشد. محدودیت های امنیتی برقرار شده بر روی نیروگاه ها در کشور مانع از این شد تا بتوانیم نمونه گیری خوبی از متغیرهای لازم سیستم انجام بدهیم. لذا شبیه ساز و مدل به دست آمده سیستم گاورنر با گذشت زمان زیادی به نتیجه لازم می رسد. اما در مدل پلنت با توجه به اینکه سیگنال های لازم از نیروگاه نمونه در شهر فورت آلمان در دسترس بود توانستیم مدل سیستم مذکور را با دقت بالایی به وسیله شناسایی سیستم به دست آوریم.

مقدمه

در گذشته برای ساخت شبیه ساز از مدل های کوچک ساخته شده استفاده می شد که تمام جوانب و نکات یک نیروگاه را بعضا در بر نمی گرفت اما با پیشرفت علم و تکنولوژی در زمینه شبیه سازی رایانه ای سیستم ها و چه در علم ریاضی روش های قدیمی منسوخ شد. آنچه مسلم است این است که مطالعه رفتار دینامیکی یک سیستم قدرت مستلزم مدلسازی دینامیکی اجزای مختلف آن به ویژه نیروگاه می باشد.

اخیرا توربین های گازی با بازده بالا و غیر ایزوله که به شبکه سراسری متصل می شوند در شبکه های قدرت توسعه بسیاری پیدا کرده اند. امروزه این نیروگاه ها از این جهت که سریع وارد مدار شده و قادر به جبران اوج بار می شوند بسیار مورد توجه قرار گرفته اند. همچنین این نیروگاه ها به واسطه سیکل ترکیبی شدن دارای راندمان بالاتری نسبت به حالت سیکل باز شده اند. از آنجا که بخش اعظم تولید نیروگاه های سیکل ترکیبی در قسمت گازی آن می باشد لذا مدلسازی قسمت گازی این نیروگاه ها اهمیت بیشتری پیدا می کنند. نیروگاه های پیشرفته توربین گازی به تغییرات فرکانس بسیار حساس هستند و ممکن است در یک اغتشاش فرکانسی دچار قطع اضطراری شوند.

همراه با روند توسعه و پیشرفت روش ساخت توربین های گازی با توربین های بخار بازدهی نیروگاه را به حدود 50 درصد می رساند. تجزیه و تحلیل ترمودینامیکی نشان می دهد که توربین های گازی دارای 30 درصد بازدهی هستند و درجه حرارت گاز خروجی آنها 500 تا 600 درجه سانتیگراد است که برای یک نیروگاه حرارتی دمای مناسبی است. با سرد کردن این گاز در یک بویلر بازیاب حرارت (Heat Recovery Steam Generator) می توان بخار سوپر هیت تولید نمود و به این طریق یک توربین بخار را به کار انداخت. این مجموعه را سیکل ترکیبی گویند.

نیروگاه های سیکل ترکیبی می توانند در دو مد تک و سیکل ترکیبی کار کنند. در مد تک فقط توربین گاز کار می کند و محصولات احتراق خروجی توربین گاز از طریق میراکننده کنار گذر خارج می شوند. در مد سیکل ترکیبی هر دو توربین گاز و بخار کار می کنند و محصولات احتراق خروجی توربین گاز از طریق میراکننده ورودی به بویلر راه می یابد. لازم به توضیح است که میراکننده ها در طی بهره برداری عادی واحد نقشی در کنترل بار ندارند و در طی بهره برداری عادی واحد، میراکننده ورودی بویلر کاملاً باز می باشد، که این امر به منظور استفاده حداکثر از انرژی حرارتی توربین های گاز می باشد. میراکننده ها فقط در هنگام راه اندازی و توقف یا توقف اضطراری، قابل کنترل بوده و در حفاظت بویلرها نقش اساسی ایفا می کنند.

یک امتیاز مهم نیروگاه های گازی این است که به سرعت می توان آنها را به شبکه متصل کرد و یا قطع نمود.

این نوع سیستم ها بعد از اغتشاش شدید سریعا ناپایدار می گردند. علاوه بر آن در اکثر موارد به موتورهای با توان اکتیو بالا وصل می شوند و دائماً در حال تغییر نقطه کار هستند و گاهی ورودی های با تغییر ناگهانی زیاد به آنها اعمال می شود که تمامی این موارد انجام مطالعات دینامیکی و پایداری را که در مرحله بعد از مدلسازی صورت می گیرد، ضروری می سازد.

با توجه به ضروری بودن حجم بالای مطالعات و کار مورد نیاز برای تهیه شبیه ساز نیروگاه گازی و اینکه برای شناسایی سیستم گاورنر ابتدا در نظر گرفته شد که از روش جعبه سیاه استفاده شود ولی امکان گرفتن نمونه در نیروگاه را پیدا نکردیم و با اطلاعات و نمونه های در دسترس مجبور شدیم مدل گاورنر را به صورت جعبه خاکستری و با استفاده از روابط فیزیکی پیدا کنیم در نهایت با توجه به وسعت کار مجبور به مدلسازی نیروگاه در یک قسمت از ناحیه کنترل بار شدیم که IGV تنها در این بازه در 5 درصد مقدار حداکثر خود قرار دارد.

در این پروژه ضمن بررسی نحوه عملکرد نیروگاه به ویژه در حالت کنترل بار فرکانس به مدلسازی نیروگاه از نوع V94.2 با سیستم کنترل TELEPERM-XP با ظرفیت 159 مگاوات می پردازیم که توسط شرکت مپنا در بیشتر نیروگاه های در دست احداث از جمله ارومیه – جهرم – عسلویه – دماوند و کرمان و… در حال اجرا است. این نیروگاه ها از نوع تک محوره و قابل کار با دو سوخت گاز و گازوئیل می باشد.

تعداد صفحه : 110


دانلود با لینک مستقیم