یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

پایان نامه انتخاب یک سیستم خنک سازی توربین گازی

اختصاصی از یارا فایل پایان نامه انتخاب یک سیستم خنک سازی توربین گازی دانلود با لینک مستقیم و پرسرعت .

پایان نامه انتخاب یک سیستم خنک سازی توربین گازی


پایان نامه انتخاب یک سیستم خنک سازی توربین گازی

 

این فایل درقالب ورد وقالب ویرایش در 210 صفحه می باشد.
مقدمه

 

این فصل عمدتاً روی موضوعات انتقال جرم و حرارت تمرکز می یابد چون آنها برای خنک سازی اجزا ی دستگاه توربین بکار می روند و انتظار می رود که خواننده با اصول مربوطه در این رشته ها آشنایی داشته باشد. تعدادی از کتابهای فوق العاده (1-7) در بررسی این اصول توصیه می شوند که شامل Streeter، دینامیک ها یا متغیرهای سیال Eckert و Drake، تجزیه و تحلیل انتقال جرم و حرارت، Incropera و Dewitt، اصول انتقال حرارت و جرم, Rohsenow و Hartnett، کتاب دستی انتقال حرارت, Kays، انتقال جرم و حرارت همرفتی, Schliching، تئوری لایه مرزی، و Shapiro، دینامیک ها و ترمودینامیک های جریان سیال تراکم پذیر.

 

وقتی یک منبع جامع اطلاعات موجود باشد. مولف این فصل خواننده را به چنین منبعی ارجاع میدهد. با این وجود وقتی داده ها در صفحات یا مقالات گوناگون پخش شده باشند, مولف سعی می کند که این داده ها را در این فصل بطور خلاصه بیان نماید.

 

 

 

 

 

 

 

 

 

فهرست اسامی نمادها

 

a- سرعت صورت

 

b- بعد خطی در عدد دورانی

 

  • منطقه مرجع, منطقه حلقوی مسیر گاز

 

Ag – سطح خارجی ایرفویل

 

 - عدد شناوری

 

BR,M- نرخ وزش

 

CP- حرارت ویژه در فشار ثابت

 

d-قطر هیدرولیکی

 

e- ارتفاع آشفته ساز

 

 -عدد اکرت

 

g- شتاب جاذبه زمین

 

FP= پارامتر جریان برای هوای خنک سازی

 

G= پارامتر ناهمواری انتقال حرارت

 

Gr=  - عدد گراشوف

 

h- ضریب انتقال حرارت

 

ht- ضریب انتقال حرارت افزایش یافته با آشفته سازها

 

 - نسبت شار اندازه حرکت

 

k- رسانایی حرارتی

 

 -رسانایی حرارتی سیال

 

L-طول مرجع

 

m-نرخ جریان جرم

 

mc- نرخ جریان خنک سازی

 

M= - نرخ دمش

 

Ma= V/a- عدد ماخ

 

rpm وN- سرعت روتور

 

NUL= hL/kf- عدد نوسلت

 

Pr=  -عدد پرانتل

 

PR= نسبت فشار کمپرسور

 

Ps=فشار استاتیک

 

Pt= فشار کل

 

Ptin-فشار کل ورودی

 

Q- نرخ انتقال حرارت- نرخ انتقال انرژی

 

- شار حرارتی

 

p- شیب بام آشفته ساز

 

r- وضعیت شعاعی

 

R- شعاع میانگین, شعاع محفظه احتراق (کمباستر), مقاومت, ثابت گاز

 

Ri-شعاع موضعی تیغه

 

RT- شعاع نوک تیغه

 

Rh=شعاع توپی یا مرکز تیغه

 

Red=  - عدد رینولدز براساس قطر هیدرولیکی d

 

ReL= - عدد رینولدز براساس L

 

Ro= b/U - عدد دورانی

 

Ros= 1/Ro- عدد Rossby

 

s-فاصله سطح نرمال شده

 

St- عدد استانتون

 

t- زمان

 

Tc- دمای هوای خنک سازی و نیز دمای تخلیه کمپرسور

 

Tf- دمای فیلم سطح

 

Tg- دمای گاز

 

Tgin- دمای گاز ورودی

 

Tm- دمای فلز و نیز دمای لایه مخلوط سازی

 

Tref- دمای مرجع

 

Tst- دمای استاتیک موضعی

 

Tu- شدت جریان آشفتگی

 

- نوسان سرعت محوری محلی

 

uin- سرعت گاز  ورودی

 

U,V,W- مولفه های سرعت جریان خنک سازی یا جریان اصلی در جهات  z, y, x

 

w- پهنا

 

- زوایه شیب جت فیلم

 

- زاویه بین فیلم جت و محورهای جریان اصلی

 

- نسبت حرارتی ویژه

 

- ضریت حجمی انبساط حرارتی, همواری سطح

 

- قابلیت انتشار حرارتی گردابی

 

 - قابلیت انتشار اندازه حرکت گردابی

 

- تاثیر انتقال حرارت

 

- تاثیر خنک سازی

 

- بارزه حرارتی

 

 - ویسکوزیته مطلق گاز

 

- چگالی

 

- حد تنش گسیختگی

 

- فرکانس دورانی

 

زیر نویس ها

 

aw- دیوار آدیاباتیک                     d- براساس قطر لبه هدایت کننده (سیلندر)

 

b- جسم                                   o-کل                                                     

 

C- خنک کننده                          w-دیوار

 

- ویژگی جریان اصلی(جریان آزاد)tur-توربین

 

f- فیلم                                    hc- آبشار داغ   

 

 

 

 

 

خنک سازی توربین بعنوان یک تکنولوژی کلیدی برای بهینه سازی موتورهای توربین گازی

 

عملکرد یک موتور توربین گازی تا حد زیادی تحت تاثیر دمای ورودی توربین می باشد و افزایش عملکرد قابل توجهی را می توان با حداکثر دمای ورودی مجاز توربین بدست آورد. از نقطه نظر عملکردی، احتراق با دمای ورودی توربین در حدود می تواند یک ایده ال به شمار آید چون هیچ کاری برای کمپرس کردن هوای مورد نیاز برای رقیق کردن محصولات احتراقی به هدر نمی رود. بنابراین روند صنعتی جاری, دمای ورودی توربین را به دمای استوکیومتری سوخت  بخصوص برای موتورهای نظامی, نزدیکتر می کند. با این وجود دمای مجاز اجزای فلزی نمی تواند از تخطی کند. برای کارکردن در دماهای بالای این حد, یک سیستم موثر خنک سازی اجزا مورد نیاز است. پیشرفت در خنک سازی, یکی از ابزار اصلی برای رسیدن به دماهای ورودی توربین بالاتر می‌باشد و این امر به اصلاح عملکرد و بهبود عمر توربین منتهی می شود. انتقال حرارت یک عامل مهم طراحی برای همه بخش های یک توربین گاز پیشرفته بخصوص در بخش های توربین و محفظه احتراق می باشد. در بحث وضعیت خنک سازی مصنوعی بخش داغ، باید به خاطر داشته باشید که طراح توربین مرتباً تحت فشارهای شدید برنامه زمانبدی توسعه, قابلیت پرداخت, دوام و انواع دیگر محدودیت های درون نظامی می باشد و همه اینها قویاً انتخاب یک طرح خنک سازی را تحت تاثیر قرار میدهند.



فهرست مطالب
:

مقدمه 1
خنک سازی توربین بعنوان یک تکنولوژی کلیدی برای بهینه سازی موتورهای توربین گازی 7
چالش های خنک سازی برای دماهای پیوسته درحال افزایش گاز ونسبت فشارکمپرسور 8
تکنیک های خنک سازی استفاده شده متداول 14
تاثیر خنک سازی 18
مشکلات خنک سازی 22
ترکیب پوشش های حصار حرارتی و خنک سازی 30
فرایند بهبود خنک سازی ایرفویل 32
تعریف پارامترهای شباهت انتقال جرم و حرارت اصلی 35
کنش متقابل انتقال جرم – حرارت در لایه مرزی ایرفویل 36
نقش تشابه در رقابت تجربی حرارت ایرفویل توربین و انتقال جرم 42
موضوعات انتقال حرارت گذرا و پایدار در بخش داغ موتور 44
دمای فلز و تاثیر آن روی عمر اجزای توربین 46
موضوعات مربوط به تغییرمکان های دمایی گذرای روتوربه استاتوروکنترل فاصله نوک آزاد 48
خنک سازی نازل توربین 56
تقابل با محفظه احتراق 58
انتقال حرارت پره 65
خمیدگی 69
تاثیرات ناهمواری 74
اغتشاش 76
خنک سازی فیلم پره 76
نسبت دمش 86
انحنای سطح 87
گرادیان فشار 88
آشفتگی جریان اصلی 89
شیارهای خنک سازی فیلم 91
تجمع فیلم 92
تاثیر تزریق هوای خنک سازی فیلم روی انتقال حرارت سطح 94
موضوعات خنک سازی دیواره نهایی 95
خنک سازی تیغه توربین 100
تاثیرات سه بعدی ودورانی روی انتقال حرارت تیغه 102
نیروهای دورانی 102
تاثیرات سه بعدی 105
پروفایل دمای گاز شعاعی 106
تاثیرات ناپیوستگی 107
تکنیک های خنک سازی درونی تیغه 109
گذرگاههای درونی هموار 111
تیرک ها/فین ها (نوارهای زاویه دار یا طولی 113
پین فین ها 121
تاثیر جت 128
جریان گردابی 138
خنک سازی فیلم 141
موضوعات خنک سازی سکو و راس 144
خنک سازی ساختارهای روتور و استاتور 148
منبع خنک سازی و سیستم های هوای ثانویه 148
بافر کردن مجموعه دیسک و روشهای خنک سازی دیسک 153
خنک سازی ساختارحفاظتی نازل و جایگاه توربین 158
خنک سازی محفظه احتراق 161
تاثیر تحول طراحی محفظه احتراق روی تکنیک های خنک سازی 161
خنک سازی تعریق 167
خنک سازی نشتی 169
همرفتی بخش پشتی افزوده 173
پوشش دهی حصار حرارتی 177
انتقال حرارت تجربی پیشرفته و معتبر سازی خنک سازی 179
ارزیابی انتقال حرارت بیرونی و تکنیک های معتبر سازی خنک سازی 180
رنگ حساس به فشار 182
ارزیابی غیر مستقیم آشفتگی 185
ارزیابی های انتقال حرارت و جریان داخلی 188
شبیه سازی انتقال حرارت مزدوج و معتبر سازی در یک آبشار داغ 194
معتبر سازی تاثیر خنک سازی تیغه در آبشار داغ 194
شرایط مرزی تجربی دیسک توربین 200
تائید خنک سازی در یک آزمون موتور 204
ابزار بندی متعارف 204
پیرومتر درج شده درگاه بروسکوب 205
رنگ های حرارتی دما بالا 206
بررسی های چند نظامی در انتخاب سیستم خنک سازی توربین


دانلود با لینک مستقیم

پایان نامه کارشناسی مکانیک - انتخاب یک سیستم خنک سازی توربین گازی

اختصاصی از یارا فایل پایان نامه کارشناسی مکانیک - انتخاب یک سیستم خنک سازی توربین گازی دانلود با لینک مستقیم و پرسرعت .

پایان نامه کارشناسی مکانیک - انتخاب یک سیستم خنک سازی توربین گازی


پایان نامه کارشناسی مکانیک - انتخاب یک سیستم خنک سازی توربین گازی

 

این فایل در قالب ورد و قابل ویرایش در  230 صفحه می باشد.

 

  1. مقدمه
  2. خنک سازی توربین بعنوان یک تکنولوژی کلیدی برای بهینه سازی موتورهای توربین گازی
  3. چالش های خنک سازی برای دماهای پیوسته درحال افزایش گاز ونسبت فشارکمپرسور
  4. تکنیک های خنک سازی استفاده شده متداول
  5. تاثیر خنک سازی
  6. مشکلات خنک سازی
  7. ترکیب پوشش های حصار حرارتی و خنک سازی
  8. فرایند بهبود خنک سازی ایرفویل
  9. تعریف پارامترهای شباهت انتقال جرم و حرارت اصلی
  10. کنش متقابل انتقال جرم – حرارت در لایه مرزی ایرفویل
  11. نقش تشابه در رقابت تجربی حرارت ایرفویل توربین و انتقال جرم
  12. موضوعات انتقال حرارت گذرا و پایدار در بخش داغ موتور
  13. دمای فلز و تاثیر آن روی عمر اجزای توربین
  14. موضوعات مربوط به تغییرمکان های دمایی گذرای روتوربه استاتوروکنترل فاصله نوک آزاد
  15. خنک سازی نازل توربین
  16. تقابل با محفظه احتراق
  17. انتقال حرارت پره
  18. -خمیدگی
  19. -تاثیرات ناهمواری
  20. -اغتشاش
  21. خنک سازی فیلم پره
  22. -نسبت دمش
  23. -انحنای سطح
  24. -گرادیان فشار
  25. -آشفتگی جریان اصلی
  26. -شیارهای خنک سازی فیلم
  27. -تجمع فیلم
  28. -تاثیر تزریق هوای خنک سازی فیلم روی انتقال حرارت سطح
  29. موضوعات خنک سازی دیواره نهایی
  30. خنک سازی تیغه توربین
  31. تاثیرات سه بعدی و دورانی روی انتقال حرارت تیغه
  32. -نیروهای دورانی
  33. -تاثیرات سه بعدی
  34. پروفایل دمای گاز شعاعی
  35. تاثیرات ناپیوستگی
  36. تکنیک های خنک سازی درونی تیغه
  37. -گذرگاه های درونی هموار
  38. – تیرک ها/فین ها (نوارهای زاویه دار یا طولی)
  39. -پین فین ها
  40. -تاثیر جت
  41. -جریان گردابی
  42. -خنک سازی فیلم
  43. موضوعات خنک سازی سکو و راس
  44. خنک سازی ساختارهای روتور و استاتور
  45. -منبع خنک سازی و سیستم های هوای ثانویه
  46. بافر کردن مجموعه دیسک و روش های خنک سازی دیسک
  47. خنک سازی ساختار حفاظتی نازل و جایگاه توربین
  48. خنک سازی  محفظه احتراق
  49. -تاثیر تحول طراحی  محفظه احتراق روی تکنیک های خنک سازی
  50. خنک سازی تعریق
  51. خنک سازی نشتی
  52. همرفتی بخش پشتی افزوده
  53. پوشش دهی حصار حرارتی
  54. انتقال حرارت تجربی پیشرفته و معتبر سازی خنک سازی
  55. ارزیابی انتقال حرارت بیرونی و تکنیک های معتبر سازی خنک سازی
  56. -رنگ حساس به فشار
  57. -ارزیابی غیر مستقیم آشفتگی
  58. ارزیابی های انتقال حرارت و جریان داخلی
  59. شبیه سازی انتقال حرارت مزدوج و معتبر سازی در یک آبشار داغ
  60. -معتبر سازی تاثیر خنک سازی تیغه در آبشار داغ
  61. شرایط مرزی تجربی دیسک توربین
  62. تائید خنک سازی در یک آزمون موتور
  63. -ابزار بندی متعارف
  64. -پیرومتر درج شده درگاه بروسکوب
  65. -رنگ های حرارتی دما بالا
  66. بررسی های چند نظامی در انتخاب سیستم خنک سازی توربین گازی

مقدمه

این فصل عمدتاً روی موضوعات انتقال جرم و حرارت تمرکز می یابد چون آنها برای خنک سازی اجزا ی دستگاه توربین بکار می روند و انتظار می رود که خواننده با اصول مربوطه در این رشته ها آشنایی داشته باشد. تعدادی از کتابهای فوق العاده (1-7) در بررسی این اصول توصیه می شوند که شامل Streeter، دینامیک ها یا متغیرهای سیال Eckert و Drake، تجزیه و تحلیل انتقال جرم و حرارت، Incropera و Dewitt، اصول انتقال حرارت و جرم, Rohsenow و Hartnett، کتاب دستی انتقال حرارت, Kays، انتقال جرم و حرارت همرفتی, Schliching، تئوری لایه مرزی، و Shapiro، دینامیک ها و ترمودینامیک های جریان سیال تراکم پذیر.

وقتی یک منبع جامع اطلاعات موجود باشد. مولف این فصل خواننده را به چنین منبعی ارجاع میدهد. با این وجود وقتی داده ها در صفحات یا مقالات گوناگون پخش شده باشند, مولف سعی می کند که این داده ها را در این فصل بطور خلاصه بیان نماید.

 

 

 

 

فهرست اسامی نمادها

a- سرعت صورت

b- بعد خطی در عدد دورانی

  • منطقه مرجع, منطقه حلقوی مسیر گاز

Ag – سطح خارجی ایرفویل

 - عدد شناوری

BR,M- نرخ وزش

CP- حرارت ویژه در فشار ثابت

d-قطر هیدرولیکی

e- ارتفاع آشفته ساز

 -عدد اکرت

g- شتاب جاذبه زمین

FP= پارامتر جریان برای هوای خنک سازی

G= پارامتر ناهمواری انتقال حرارت

Gr=  - عدد گراشوف

h- ضریب انتقال حرارت

ht- ضریب انتقال حرارت افزایش یافته با آشفته سازها

 - نسبت شار اندازه حرکت

k- رسانایی حرارتی

 -رسانایی حرارتی سیال

L-طول مرجع

m-نرخ جریان جرم

mc- نرخ جریان خنک سازی

M= - نرخ دمش

Ma= V/a- عدد ماخ

rpm وN- سرعت روتور

NUL= hL/kf- عدد نوسلت

Pr=  -عدد پرانتل

PR= نسبت فشار کمپرسور

Ps=فشار استاتیک

Pt= فشار کل

Ptin-فشار کل ورودی

Q- نرخ انتقال حرارت- نرخ انتقال انرژی

- شار حرارتی

p- شیب بام آشفته ساز

r- وضعیت شعاعی

R- شعاع میانگین, شعاع محفظه احتراق (کمباستر), مقاومت, ثابت گاز

Ri-شعاع موضعی تیغه

RT- شعاع نوک تیغه

Rh=شعاع توپی یا مرکز تیغه

Red=  - عدد رینولدز براساس قطر هیدرولیکی d

ReL= - عدد رینولدز براساس L

Ro= b/U - عدد دورانی

Ros= 1/Ro- عدد Rossby

s-فاصله سطح نرمال شده

St- عدد استانتون

t- زمان

Tc- دمای هوای خنک سازی و نیز دمای تخلیه کمپرسور

Tf- دمای فیلم سطح

Tg- دمای گاز

Tgin- دمای گاز ورودی

Tm- دمای فلز و نیز دمای لایه مخلوط سازی

Tref- دمای مرجع

Tst- دمای استاتیک موضعی

Tu- شدت جریان آشفتگی

- نوسان سرعت محوری محلی

uin- سرعت گاز  ورودی

U,V,W- مولفه های سرعت جریان خنک سازی یا جریان اصلی در جهات  z, y, x

w- پهنا

- زوایه شیب جت فیلم

- زاویه بین فیلم جت و محورهای جریان اصلی

- نسبت حرارتی ویژه

- ضریت حجمی انبساط حرارتی, همواری سطح

- قابلیت انتشار حرارتی گردابی

 - قابلیت انتشار اندازه حرکت گردابی

- تاثیر انتقال حرارت

- تاثیر خنک سازی

- بارزه حرارتی

 - ویسکوزیته مطلق گاز

- چگالی

- حد تنش گسیختگی

- فرکانس دورانی

زیر نویس ها

aw- دیوار آدیاباتیک                     d- براساس قطر لبه هدایت کننده (سیلندر)

b- جسم                                   o-کل                                                     

C- خنک کننده                          w-دیوار

- ویژگی جریان اصلی(جریان آزاد)tur-توربین

f- فیلم                                    hc- آبشار داغ   

 

 

خنک سازی توربین بعنوان یک تکنولوژی کلیدی برای بهینه سازی موتورهای توربین گازی

عملکرد یک موتور توربین گازی تا حد زیادی تحت تاثیر دمای ورودی توربین می باشد و افزایش عملکرد قابل توجهی را می توان با حداکثر دمای ورودی مجاز توربین بدست آورد. از نقطه نظر عملکردی، احتراق با دمای ورودی توربین در حدود می تواند یک ایده ال به شمار آید چون هیچ کاری برای کمپرس کردن هوای مورد نیاز برای رقیق کردن محصولات احتراقی به هدر نمی رود. بنابراین روند صنعتی جاری, دمای ورودی توربین را به دمای استوکیومتری سوخت  بخصوص برای موتورهای نظامی, نزدیکتر می کند. با این وجود دمای مجاز اجزای فلزی نمی تواند از تخطی کند. برای کارکردن در دماهای بالای این حد, یک سیستم موثر خنک سازی اجزا مورد نیاز است. پیشرفت در خنک سازی, یکی از ابزار اصلی برای رسیدن به دماهای ورودی توربین بالاتر می‌باشد و این امر به اصلاح عملکرد و بهبود عمر توربین منتهی می شود. انتقال حرارت یک عامل مهم طراحی برای همه بخش های یک توربین گاز پیشرفته بخصوص در بخش های توربین و محفظه احتراق می باشد. در بحث وضعیت خنک سازی مصنوعی بخش داغ، باید به خاطر داشته باشید که طراح توربین مرتباً تحت فشارهای شدید برنامه زمانبدی توسعه, قابلیت پرداخت, دوام و انواع دیگر محدودیت های درون نظامی می باشد و همه اینها قویاً انتخاب یک طرح خنک سازی را تحت تاثیر قرار میدهند.


دانلود با لینک مستقیم

توربین های بادی

اختصاصی از یارا فایل توربین های بادی دانلود با لینک مستقیم و پرسرعت .

توربین های بادی


توربین های بادی

توربین های بادی

180 صفحه در قالب word

 

 

 

 چکیده :

تبدیل انرژی باد به انرژی مکانیکی و سپس انرژی الکتریکی در توربین های بادی انجام می شود . توربین های بادی در اندازه های مختلف با اجزای مختلف و ویژگی های متفاوت با توجه به شرایط محیط و میزان نیاز تولید توان الکتریکی ساخته می شوند ،این توربین ها از پره ها با قطر روتور چندین متر تا حدود 100 متر برای تولید توان های چندین کیلووات تا 2000 کیلووات مورد استفاده قرار می گیرند علاوه بر تولید توان الکتریکی از توربین های بادی برای پمپاژ آب نیز استفاده می شود.

انرژی باد یکی از صورت های منابع انرژی تجدید پذیر است که با توجه به ویژگی مشترک انرژی های تجدید پذیر به صورت گسترده با تمرکز کم ( چگالی کم ) در اختیار بشر قرار گرفته است

نوعی از انرژی خورشید است که بر اثر اختلاف دمای بین دو ناحیه تولید می شود:  ناحیه سرد پر فشار و ناحیه گرم کم فشار است .

طی سالهای اخیر تولید برق به وسیله توربینهای بادی افزایش پیدا کرده است. توربینهای جدید به صورتهای متفاوت متصل به شبکه و یا منفعل از شبکه و به صورت تولید پراکنده در سیستمهای قدرت مورد استفاده قرار می گیرند.

در این پروژه در مورد انواع توربین ها و مکانیزم عملکرد و طراحی آنها توضیح داده شده است . همچنین در مورد حفاظت توربین ها و کنترل توان نیروگاه ها توسط توربین ها به مواردی اشاره شده است.

ﻛﺸﻮر اﻳﺮان از ﻫﺮ ﻃﺮف ﺑﺎ ﻛﻮﻫﻬﺎی ﻣﺮﺗﻔﻌـﻲ ﻣﺤـﺼﻮر ﮔـﺸﺘﻪ اﺳـﺖ. اﻳـﺮان ﺑـﺎ ﻣﻮﻗﻌﻴـﺖ ﺟﻐﺮاﻓﻴﺎﻳﻲ ﻛﻪ دارد در آﺳﻴﺎ ﺑﻴﻦ ﺷﺮق و ﻏﺮب و ﻧـﻮاﺣﻲ ﮔـﺮم ﺟﻨـﻮب و ﻣﻌﺘـﺪل ﺷـﻤﺎﻟﻲ واﻗـﻊ ﺷﺪه اﺳﺖ ودر ﻣﺴﻴﺮ ﺟﺮﻳﺎﻧﻬـﺎی ﻋﻤـﺪه ﻫـﻮاﻳﻲ ﺑـﻴﻦ آﺳـﻴﺎ ، اروﭘـﺎ ، اﻓﺮﻳﻘـﺎ ، اﻗﻴـﺎﻧﻮس ﻫﻨـﺪ و اﻗﻴﺎﻧﻮس اﻃﻠﺲ ﻗﺮار ﮔﺮﻓﺘﻪ اﺳﺖ . همین امر باعث پیشرفت سریع در استفاده از نیروگاه بادی  خواهد شد.

 

فهرست مطالب

فصل اول :

  • ﺗﺎرﻳﺨﭽﻪ ...                                        ..2
  • ﺗﺠﺮﺑﻪاﻳﺮاﻧﻴﺎن . 2
  • ﺗﺠﺮﺑﻪآﻣﺮﻳﻜﺎﻳﻲﻫﺎ                         ..3
  • ﺗﺠﺮﺑﻪداﻧﻤﺎرﻛﻲﻫﺎ ... 4
  • ﺗﺠﺮﺑﻪﻓﺮاﻧﺴﻮیﻫﺎ  5
  • ﺗﺠﺮﺑﻪروﺳﻬﺎ ... 5
  • ﺗﺠﺮﺑﻪﻫﻠﻨﺪیﻫﺎ ..6
  • ﺗﺠﺮﺑﻪاﻧﮕﻠﻴﺴﻲﻫﺎ .6
  • ﺗﺠﺮﺑﻪآﻟﻤﺎﻧﻲﻫﺎ                                     . 7
  • ﻛﻠﻴﺎﺗﻲدرﺑﺎرهاﻧﺮژیﺑﺎد ... 7
  • ﻣﻨﺒﻊاﻧﺮژیﺑﺎدی . 8
  • ﺑﺎد .. 9
  • اﻧﻮاعﺑﺎدﻫﺎ ...11
  • ﺟﺪول ﺑﻮﻓﻮرت        ...12
  • ﺗﻐﻴﻴﺮاتﺳﺮﻋﺖﺑﺎد  13
  • مزایای استفاده از توربین‌های بادی . 15
  • رشد ظرفیت توربینهای بادی تا پایان سال 2004   16

فصل دوم :

2- 1 توربین بادی                                                   . 21

2-2 توربینهای بادی چگونه کار می کنند ؟                                        21

2-3ﺗﻘﺴﻴﻢﺑﻨﺪیﺗﻮرﺑﻴﻦﻫﺎیﺑﺎدی                                            . 22

2-4 دوﻧﻮعﺗﻮرﺑﻴﻦﺑﺎدیﻓﻮقازﻗﺴﻤﺖﻫﺎیزﻳﺮﺗﺸﻜﻴﻞﺷﺪه اﻧﺪ                               .28

2-5 ساختمان توربین بادی                                         ...29

2-6 انواع توربین های بادی                                          29

2-7 مفاهیم کنترل توان                                           ..31

2-8  انواع ژنراتورهای مدرن                                        ..32

2-9 ژنراتورهای آسنکرون (القایی)                                       34

2-10  ژنراتور سنکرون                                           . 37

2-11 توربین های مختلف با کاربرد های مختلف                                   .. 38

2-12 برق بادی در مقیاس‌های کوچک                                        ... 50

فصل سوم :

3-1 ﺗﻮرﺑﻴﻦﺑﺎدیﭼﮕﻮﻧﻪﻛﺎرﻣﻲﻛﻨﺪ                                           .. 62

3-2 تغییرپذیری باد و قدرت توربین                                    ...67

3-3 تعیین محل توربین‌های بادی                                      . 67

3-4 نصب توربین‌ها نزدیک ساحل                                     ... 69

3-5 نصب توربین‌ها دور از ساحل                                     ... 69

3-6 توربین‌های هوائی (معلق در هوا(                                   ... 70

3-7 نیروگاههای بادی کوچک                                        ..73

3-8 رشد و روند هزینه                                           .75

3-9 ذخیره انرژی                                              ..76

3-10 اکولوژی(شناخت محیط زیست)و آلودگی تولید گازCo2وآلودگیمحیطزیست             77

3-11 تأثیر نیروگاههای بادی در حیات وحش                                . 78

3-12 اﺟﺰاءاﺻﻠﻲﺗﻮرﺑﻴﻨﻬﺎیﺑﺎدی                                          ...81

3-13  واحد تولید کاور و نوزکن                                           .  88

3-14 ﺳﺎﺧﺘﻤﺎنﭘﺮهﻫﺎیﺗﻮرﺑﻴﻦﺑﺎدی                                     ...93

3-15 ﺗﻨﻈﻴﻢدورﺗﻮرﺑﻴﻦﻫﺎیﺑﺎدی                                             96

3-16 ﻗﺮاردادنﺗﻮرﺑﻴﻦدرﺟﻬﺖﺑﺎد                                           ..98

3-17 ژﻧﺮاﺗﻮرﻫﺎیﻣﻮﻟﺪﺑﺮق                                              .. 99

3-18 ﺗﺮاﻧﺴﻔﻮرﻣﺎﺗﻮرﻫﺎ                                           103

3-19 ﺗﻨﻈﻴﻢﻛﻨﻨﺪهﻫﺎیوﻟﺘﺎژ                                         . 104

فصل چهارم :

4-1 ﺧﻼﺻﻪ                                                 .109

4-2 ﻣﻘﺪﻣﻪ                                                 110

4-3 آﺳﯿﺐﻫﺎیﻣﺴﺘﻘﯿﻢوﻏﯿﺮﻣﺴﺘﻘﯿﻢ                                   ...  110

فصل پنجم :

5-1 ﺧﻼﺻﻪ                                                       122

5-2ﻣﻘﺪﻣﻪ                                                      ... 122

5-3 ﺳﺎﺧﺘﺎرژﻧﺮاﺗﻮرﺑﺎدیﻣﺘﺼﻞﺑﻪﺷﺒﮑﻪ                                        .. 124

5-4 ﻗﺪرتﺗﻮرﺑﯿﻦﺑﺎدی                                               ... 125

5-5 ﻣﺪلرﯾﺎﺿﯽژﻧﺮاﺗﻮرآﺳﻨﮑﺮونﻣﺘﺼﻞﺑﻪﺷﺒﮑﻪ                                     .127

5-6 اﯾﺪهاﺻﻠﯽزﯾﺮﺳﯿﺴﺘﻢﮐﻨﺘﺮل                                              ..128

5-7 ﻣﻄﺎﻟﻌﺎتﻋﺪدی                                                 .. 133

5-8 ﻧﺘﯿﺠﻪﮔﯿﺮی                                                   .. 137

فصل ششم :

6-1 ﻣﻮﻗﻌﻴﺖﺟﻐﺮاﻓﻴﺎﻳﻲاﻳﺮان                                             .. 139

6-2 ﺑﺎدﻫﺎیاﻳﺮان                                                    . 140

6-3 ﺧﻼﺻﻪدوﻣﻄﺎﻟﻌﻪﺑﺮایﺗﻌﻴﻴﻦﻣﺤﻞﻧﺼﺐﺗﻮرﺑﻴﻦﺑﺎدی                                  142

6-4 ﺗﻮﺳﻌﻪﺗﻮرﺑﻴﻦﻫﺎیﺑﺎدیدرﺟﻬﺎن                                      147

6-5 ﻧﻴﺮوﮔﺎهﻋﻈﻴﻢﺑﺎدیﺑﻪﻗﺪرت   KW2500                                     . 147

6-6 ﭘﺮوژهﻫﺎیﺑﺎد                                                  .. 150

6-7 ﻃﺮاﺣﻲ،ﺳﺎﺧﺖوﻧﺼﺐﺗﻮرﺑﻴﻦﺑﺎدی10ﻛﻴﻠﻮواتﺳﻬﻨﺪﺗﺒﺮﻳﺰ                              151

6-8  نیروگاهبادیبینالود ; اولینمزرعهبادیدرایران                                   .. 154

6-9 آمار ظرفیت نصب توربینهای بادی در ایران                             . 160

فصل هفتم:

7-1  شبیه سازی پروژه در نرم افزار Digsilent  و  matlab                       ..165

مراجع                                                    ..179

 

 

1-1 ﺗﺎرﻳﺨﭽﻪ

ﺑﺸﺮ از زﻣﺎﻧﻬﺎی ﺑﺴﻴﺎر دور ﺑﻪ ﻧﻴﺮوی ﻻﻳﺰال ﺑﺎد ﭘﻲ ﺑﺮده ﺑﻮد . آﺳﻴﺎﺑﻬﺎ و ﻛﺸﺘﻲ ﻫﺎی ﺑﺎدی ﻛﻪ ﻫﺰاران ﺳﺎل ﻗﺒﻞ ﻣﻌﻤﻮل ﺑﻮد ، ﮔﻮﻳﺎی اﻳﻦ اﻣﺮ اﺳﺖ . ﻃﺒﻖ اﺳﻨﺎد و ﻣـﺪارک ﻣﻮﺟـﻮد ، اوﻟـﻴﻦ ﻛﺮﺟﻲ ﻛﻪ ﺑﺎ ﻧﻴﺮوی ﺑﺎد ﻛﺎر ﻣﻲ ﻛﺮد ، ﺗﻮﺳﻂ ﻣﺼﺮﻳﺎن ﺳﺎﺧﺘﻪ ﺷﺪ و اوﻟﻴﻦ آﺳﻴﺎب ﺑﺎدی ﺑﺎ ﻣﺤﻮر ﻗﺎﺋﻢ ﺑﺮای آرد ﻛﺮدن ﻏﻼت ، 200 ﺳﺎل ﻗﺒﻞ از ﻣﻴﻼد ﻣﺴﻴﺢ ﺗﻮﺳﻂ اﻳﺮاﻧﻴـﺎن ﺑﻨـﺎ ﮔﺮدﻳـﺪ . ﻫـﻢ اﻛﻨﻮن ﺗﻌﺪادی آﺳﻴﺎب ﺑﺎدی در روﺳﺘﺎﻫﺎی ﺑﻴﻦ ﺧﻮاف و ﺗﺎﻳﺒﺎد وﺟﻮد دارد ﻛﻪ ﺑﻪ ﻛﺎر ﻣﺸﻐﻮﻟﻨﺪ.

آﺳﻴﺎب ﻫﺎی ﺑﺎدی اوﻟﻴﻪ دارای ﻣﺤﻮر ﻗﺎﺋﻢ ﺑﻮدﻧـﺪ ، ﺑﻌـﺪ از ﻣـﺪﺗﻲ آﺳـﻴﺎب ﻫـﺎی ﺑـﺎدی ﺑـﺎ ﻣﺤﻮر اﻓﻘﻲ و ﭘﺮواﻧﻪ ﻫﺎی ﺳﻪ ﮔﻮش ﺑـﺎدﺑﺰﻧﻲ ﻣﻌﻤـﻮل ﮔـﺸﺖ . ﻫﻨـﻮز ﻫـﻢ ﻧﻤﻮﻧـﻪ ﻫـﺎﻳﻲ از اﻳـﻦآﺳﻴﺎب ﻫﺎ را ﻣﻲ ﺗﻮان در  ﻧﻮاﺣﻲﻣﺪﻳﺘﺮاﻧﻪ ﭘﻴﺪا ﻛﺮد . در ﻗﺮن ﻳﺎزدﻫﻢ ﻣﻴﻼدی در ﺧﺎورﻣﻴﺎﻧـﻪ از آﺳـﻴﺎب ﻫـﺎی ﺑـﺎدی اﺳـﺘﻔﺎده ﻫـﺎی ﮔﻮﻧـﺎﮔﻮﻧﻲﻣﻲ ﺷﺪ . آﺳﻴﺎب ﻫﺎی ﺑﺎدی در ﻗﺮن ﺳﻴﺰدﻫﻢ ﻣﻴﻼدی ﺑﻪ ﻛﺸﻮرﻫﺎی اروﭘﺎﻳﻲ راه ﻳﺎﻓـﺖ . ﻧـﺼﺐﺑﺎدﺑﺎن ﺑﻪ ﻳﻚ ﻣﺤﻮر ﻣﺮﻛﺰی ﻛﻪ ﺑﺎ اﺳﺘﻔﺎده از ﻧﻴﺮوی ﺑﺎد ، ﺗﻮﻟﻴـﺪ ﻧﻴـﺮوی ﭼﺮﺧـﺸﻲ ﻣـﻲ ﻛـﺮد ،ﺑﻌﺪا اﻧﺠﺎم ﮔﺮﻓﺖ و ﺑﺸﺮ ﺑﻪ وﺳﻴﻠﻪ آن ﺗﻮاﻧﺴﺖ ﻧﻴﺮوی ﻻزم را ﺑﺮای آﺑﻜﺸﻲ ﺑﻪ ﻣﻨﻈﻮر آﺑﻴﺎری ،آرد ﻛﺮدن ﻏﻼت و ﺳﺮاﻧﺠﺎم اره ﻛﺮدن ﭼﻮب ﺑﻪ دﺳﺖ آورد .

 

ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است

متن کامل را می توانید در ادامه دانلود نمائید

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است


دانلود با لینک مستقیم

طراحی توربین های پلتن

اختصاصی از یارا فایل طراحی توربین های پلتن دانلود با لینک مستقیم و پرسرعت .

طراحی توربین های پلتن


طراحی توربین های پلتن

چکیده :

توربین پلتون (Pelton wheel) یا همان چرخ پلتون توسط شخصی به نام پلتون ( Lester Allan Pelton) در سال ۱۹۸۰ میلادی اختراع شده است. این توربین یکی از انواع توربین های ضربه ای می باشد که معمولا با وارد شدن ضربه توسط آبی که از ارتفاع به پره های توربین برخورد می کند ، چرخش صورت می گیرد.

فهرست :

موارد استفاده توربین های پلتن

انرژی مبادله شده در یک توربین پلتن

اندازه های اصلی در روتور توربین پلتن

چرخ توربین پلتن ایده ال

چرخ توربین پلتن واقعی

تعداد پره های توربین

اندازه های روتور

مراحل طراحی اندازه های یک توربین پلتن

 

نوع فایل : پاورپوینت

تعداد صفحات : 30 صفحه


دانلود با لینک مستقیم

گزارش کار اموزی مشخصات روتور توربین بخار E-Type

اختصاصی از یارا فایل گزارش کار اموزی مشخصات روتور توربین بخار E-Type دانلود با لینک مستقیم و پرسرعت .

گزارش کار اموزی مشخصات روتور توربین بخار E-Type


گزارش کار اموزی مشخصات روتور توربین بخار E-Type

دانلود گزارش کار اموزی رشته مکانیک مشخصات روتور توربین بخار E-Type با فرمت ورد و قابل ویرایش تعداد صفحات 121

دانلود کارآموزی آماده

 

این پروژه کارآموزی بسیار دقیق و کامل طراحی شده و جهت ارائه واحد درسی کارآموزی میباشد

تفاوت بلیدهای R و L و روش شناسایی آن ها (blade):

دو نوع blade ثابت در توربین بخار مورد استفاده قرار می گیرد که blade راست (R) و blade چپ (L) می باشد. اگر blade را طوری در مقابل خود برروی میز قرار دهیم قسمت ریشه blade (Root) مقابل ما و قسمت شراد یا caver plate دورتر از ما قرار گیرد و قسمت سطح فشار ،suction blade Surface در پایین و قسمت Pressure Surface در بالا بماند.اگر خمیدگی به سمت راست باشد یعنی بخار را به سمت راست هدایت کند blade از نوع R می باشد و اگر خمیدگی به سمت چپ باشد یعنی بخار را به سمت چپ هدایت کند blade از نوع L می باشد.در توربین بخار E-type همه bladeها از نوع R می باشند.


دانلود با لینک مستقیم