یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

مقاله کاربرد روش L1 – تقریب در معادلات انتگرال تکین

اختصاصی از یارا فایل مقاله کاربرد روش L1 – تقریب در معادلات انتگرال تکین دانلود با لینک مستقیم و پر سرعت .

مقاله کاربرد روش L1 – تقریب در معادلات انتگرال تکین


مقاله کاربرد روش L1 – تقریب در معادلات انتگرال تکین

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:21

- کاربرد روش L1 – تقریب در معادلات انتگرال تکین

1-  مقدمه: معادلات انتگرال را می‌توان با استفاده از فن LP – تقریب (به ویژه L1 تقریب) به طور موثری حل کرد. در این متن فن کلی را مورد بحث قرار می‌دهیم و سپس آن را با حل چند معادله انتگرال مختلف توضیح می‌دهیم. علاوه برامتیازات دیگر، این روش به طور موفقیت آمیزی در مورد معادلات انتگرال تکین و همین طور معادلات انتگرال قویاً تکین (نظیر انتگرال های آدامار یا متناهی – قسمت) تعمیم داده شده و به کار رفته است. در بحث حاضر، مروری بر این مطالعه ارائه می‌شود.

2-   مقدمات ریاضی :

به طور کلی هدف این متن عبارت است از کاربرد فن LP- تقریب در حل یک معادله انتگرال فردهولم (خطی یا غیر خطی) نوع اول یا دوم به صورت

 

در معادلة بالا تابع هدایتگر  و هسته K توابعی معلوم اند، در حالی که تابع مجهول است که باید آن را بیابیم پارامتر  نیز معلوم است. مساله کلی LP- تقریب پیوسته را می‌توان به صورت زیر فرمول بندی کرد:

تابع f معین روی یک بازة حقیقی مانند x همراه با یک تابع تقریب مانند F(A)، که به متغیر n پارامتری A=(a1 , …,an) در Rn وابسته است، مفروض اند.

در این صورت مساله LP- تقریب پیوسته به این معنی است که باید برداری مانند  به گونه ای بیابیم که به ازای هر رابطة :

 

برقرار باشد.

جنبة اصلی مساله که باید مورد بحث واقع شود فرمول بندی مجدد مساله معادله انتگرال به صورت یک مساله LP- تقریب است. برای این منظور، فرض کنیم بتوان تابع جواب را با تابع F(A)، که ممکن است خطی یا غیر خطی باشد،


دانلود با لینک مستقیم


مقاله کاربرد روش L1 – تقریب در معادلات انتگرال تکین

پاورپوینت حل معادلات دیفرانسیل معمولی

اختصاصی از یارا فایل پاورپوینت حل معادلات دیفرانسیل معمولی دانلود با لینک مستقیم و پر سرعت .

 

نوع فایل:  ppt _ pptx ( پاورپوینت )

( قابلیت ویرایش )

 


 قسمتی از اسلاید : 

 

تعداد اسلاید : 15 صفحه

1 حل معادلات دیفرانسیل معمولی مسایل مقدار مرزی 2 حل مسائل مقدار مرزی از طریق دستگاه معادلات در این روش میدان حل را به تعدادی قطعه تقسیم می کنیم که طول هر قطعه به اندازه گام حل h می باشد. به عنوان مثال معادله مرتبه 2 زیر را در نظر میگیریم: 3 حل مسائل مقدار مرزی از طریق دستگاه معادلات برای مشتقات موجود در رابطه از روابط بدست آمده در فصل مشتق گیری عددی استفاده می کنیم.
از بسط مرکزی استفاده می کنیم.
4 حل مسائل مقدار مرزی از طریق دستگاه معادلات پس از جاگذاری در معادله، فرم ساده شده این معادله بدین صورت خواهد بود.
5 حل مسائل مقدار مرزی از طریق دستگاه معادلات طبیعت مسائل convection, dliffusion چنین است که اگر معادله را به این فرم بنویسیم : ضرایب باید مثبت باشند.
6 حل مسائل مقدار مرزی از طریق دستگاه معادلات نتیجه مساله فوق یک دستگاه سه قطری است که با روش (TDMA)حل می شود . اکنون اگر از یک تقریب 5 نقطه ای استفاده کنیم (O(h4)) دقت خیلی بالا می رود ولی ماتریس بدست آمده نهایی 5 قطری می شود که نمی توان آنرا به روش TDMA حل کرد. باید از روش های تکرار استفاده کرد که وقت بسیار زیادی نسبت به (TDMA) می برد .
7 حل مسائل مقدار مرزی از طریق دستگاه معادلات در این جا به صرفه تر است که h را کوچک کنیم، هر چند تعداد معادلات افزایش خواهند یافت ولی باز هم نسبت به ماتریس 5 قطری وقت کمتری صرف می کند.
به خصوص آنجا که تعداد معادلات حدود 10000و 20000 است . مگر به دلایل خاص مجبور به استفاده از تقریب مثلا 4 نقطه ای شویم . هر چه تعداد نقاط بیشتر شود ناپایداری حل بیشتر می شود.
8 مثال همان معادله اول را در نظر می گیریم با مقادیر ذیل: 9 مثال شکل ساده شده معادله منفصل شده: 10 مثال و در نهایت به دستگاه ذیل می رسیم: 11 حل معادلات غیر خطی چناچه معادله غیر خطی باشد دستگاه حاصله غیر خطی خواهد بود .: 12 حل معادلات غیر خطی همانطور که دیده می شود ضریب در ماتریس ضرایب بر حسب مقادیر Ti خواهد بود (معادله غیر خطی ). برای خطی نمودن از روش های مختلف به خصوص روش نیوتن می توان استفاده کرد . این مورد خاص در مسائل CFD می باشد .
13 حل مسائل مقدار مرزی با شرایط مرزی فون نیومن چناچه شرایط مرزی از نوع شرایط فون-نیومن باشد یعنی مشتقات مرزی داده شده باشد.
شرایط مرزی را نیز منفصل می کنیم.
14 حل مسائل مقدار مرزی با شرایط مرزی فون نیومن چناچه شرایط مرزی از نوع شرایط فون-نیومن باشد یعنی مشتقات مرزی داده شده باشد.
15 حل مسائل مقدار مرزی با شرایط مرزی فون نیومن اکنون هفت معادله هفت مجهول را حل کرد .
اکنون این مقادیر بدست آمده از شرایط مرزی را جایگذاری می کنیم (اعمال شرایط مرزی )که به ترم اول TL اضافه شده و TR به ترم پنجم اضافه می شود .
.

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  ................... توجه فرمایید !

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف فروشگاه جهت کمک به سیستم آموزشی برای دانشجویان و دانش آموزان میباشد .

 



 « پرداخت آنلاین »


دانلود با لینک مستقیم


پاورپوینت حل معادلات دیفرانسیل معمولی

حل معادلات عددی دیفرانسیل

اختصاصی از یارا فایل حل معادلات عددی دیفرانسیل دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 224

 

پایا ن نامه کارشناسی

حل عددی معادلات دیفرانسیل

استاد راهنما:

دکتر جلال الدین ایزدیان

گرد آورنده:

زهرا سالاری

زمستان 1383

فهرست

مقدمه – معرفی معادلات دیفرانسیل 4

بخش اول – حل عددی معادلات دیفرانسیل معمولی 20

فصل اول – معادلات دیفرانسیل معمولی تحت شرط اولیه 20

فصل دوم – معادلات دیفرانسیل معمولی تحت شرایط مرزی 66

فصل سوم – معادلات دیفرانسیل خطی 111

بخش دوم – حل عددی معادلات دیفرانسیل جزئی 125

فصل اول – حل معادلات عددی هذلولوی 128

فصل دوم – حل معادلات عددی سهموی 146

فصل سوم – حل معادلات عددی بیضوی 164

فصل چهارم – منحنی های مشخصه 184

مقدمه

معرفی معادلات دیفرانسیل

معادله در ریاضیات وقتی با اسم خاص و صورت خاص می آید خود به تنهایی مسأله ای را نمایش می دهد که در آن می خواهیم مجهولی را بدست آوریم.

کاربرد معادله دیفرانسیل از نظر تاریخی با معرفی مفهوم های مشتق و انتگرال آغاز گردید. ساده ترین نوع معادله دیفرانسیل آن دسته از معادلاتی هستند که مشتق تابع جواب را داشته باشیم. که چنین محاسبه ای به پاد مشق گیری و انتگرال گیری نامعین موسوم است.

معادلات دیفرانسیل وابستگی بین توابع و مشتق های توابع را نشان می دهد. که از لحاظ تاریخی به طور طبیعی از زمان کشف مشتق به وسیله نیوتن ولایب نیتس آغاز می شود. (قرن هفدهم میلادی). که با رشد سریع علم و صنعت در قرن بیستم روشهای عددی حل معادلات دیفرانسیل مورد توجه قرار گرفتند که توسعه و پیشرفت کامپیوتر ها در پایان قرن بیستم موجب کاربرد روش های تقریبی تعیین جواب معادلات دیفرانسیل در


دانلود با لینک مستقیم


حل معادلات عددی دیفرانسیل

پاورپوینت حل معادلات دیفرانسیل معمولی

اختصاصی از یارا فایل پاورپوینت حل معادلات دیفرانسیل معمولی دانلود با لینک مستقیم و پر سرعت .

 

دسته بندی : پاورپوینت 

نوع فایل:  ppt _ pptx

( قابلیت ویرایش )

 


 قسمتی از محتوی متن پاورپوینت : 

 

تعداد اسلاید : 15 صفحه

1 حل معادلات دیفرانسیل معمولی مسایل مقدار مرزی 2 حل مسائل مقدار مرزی از طریق دستگاه معادلات در این روش میدان حل را به تعدادی قطعه تقسیم می کنیم که طول هر قطعه به اندازه گام حل h می باشد. به عنوان مثال معادله مرتبه 2 زیر را در نظر میگیریم: 3 حل مسائل مقدار مرزی از طریق دستگاه معادلات برای مشتقات موجود در رابطه از روابط بدست آمده در فصل مشتق گیری عددی استفاده می کنیم.
از بسط مرکزی استفاده می کنیم.
4 حل مسائل مقدار مرزی از طریق دستگاه معادلات پس از جاگذاری در معادله، فرم ساده شده این معادله بدین صورت خواهد بود.
5 حل مسائل مقدار مرزی از طریق دستگاه معادلات طبیعت مسائل convection, dliffusion چنین است که اگر معادله را به این فرم بنویسیم : ضرایب باید مثبت باشند.
6 حل مسائل مقدار مرزی از طریق دستگاه معادلات نتیجه مساله فوق یک دستگاه سه قطری است که با روش (TDMA)حل می شود . اکنون اگر از یک تقریب 5 نقطه ای استفاده کنیم (O(h4)) دقت خیلی بالا می رود ولی ماتریس بدست آمده نهایی 5 قطری می شود که نمی توان آنرا به روش TDMA حل کرد. باید از روش های تکرار استفاده کرد که وقت بسیار زیادی نسبت به (TDMA) می برد .
7 حل مسائل مقدار مرزی از طریق دستگاه معادلات در این جا به صرفه تر است که h را کوچک کنیم، هر چند تعداد معادلات افزایش خواهند یافت ولی باز هم نسبت به ماتریس 5 قطری وقت کمتری صرف می کند.
به خصوص آنجا که تعداد معادلات حدود 10000و 20000 است . مگر به دلایل خاص مجبور به استفاده از تقریب مثلا 4 نقطه ای شویم . هر چه تعداد نقاط بیشتر شود ناپایداری حل بیشتر می شود.
8 مثال همان معادله اول را در نظر می گیریم با مقادیر ذیل: 9 مثال شکل ساده شده معادله منفصل شده: 10 مثال و در نهایت به دستگاه ذیل می رسیم: 11 حل معادلات غیر خطی چناچه معادله غیر خطی باشد دستگاه حاصله غیر خطی خواهد بود .: 12 حل معادلات غیر خطی همانطور که دیده می شود ضریب در ماتریس ضرایب بر حسب مقادیر Ti خواهد بود (معادله غیر خطی ). برای خطی نمودن از روش های مختلف به خصوص روش نیوتن می توان استفاده کرد . این مورد خاص در مسائل CFD می باشد .
13 حل مسائل مقدار مرزی با شرایط مرزی فون نیومن چناچه شرایط مرزی از نوع شرایط فون-نیومن باشد یعنی مشتقات مرزی داده شده باشد.
شرایط مرزی را نیز منفصل می کنیم.
14 حل مسائل مقدار مرزی با شرایط مرزی فون نیومن چناچه شرایط مرزی از نوع شرایط فون-نیومن باشد یعنی مشتقات مرزی داده شده باشد.
15 حل مسائل مقدار مرزی با شرایط مرزی فون نیومن اکنون هفت معادله هفت مجهول را حل کرد .
اکنون این مقادیر بدست آمده از شرایط مرزی را جایگذاری می کنیم (اعمال شرایط مرزی )که به ترم اول TL اضافه شده و TR به ترم پنجم اضافه می شود .
.

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  توجه فرمایید.

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.



دانلود فایل  پرداخت آنلاین 


دانلود با لینک مستقیم


پاورپوینت حل معادلات دیفرانسیل معمولی

پاورپوینت درباره روشهای حل معادلات کان - شم

اختصاصی از یارا فایل پاورپوینت درباره روشهای حل معادلات کان - شم دانلود با لینک مستقیم و پر سرعت .

پاورپوینت درباره روشهای حل معادلات کان - شم


پاورپوینت درباره روشهای حل معادلات کان - شم

فرمت فایل :powerpoint (لینک دانلود پایین صفحه) تعداد صفحات 21 صفحه

بخشی از اسلایدها:

انتخاب پایه مناسب برای بسط تابع موج :
امواج تخت برای پتانسیلهای ضعیف
مدل بستگی قوی برای پتانسیلهای قوی مثل الکترونهای مغزه


رفتار بسیاری از الکترونهای والانس توسط هیچ یک از دو مدل قابل توصیف نیست.

برای اعمال شرط پیوستگی ابتدا موج تخت را برحسب هارمونیکهای کروی بسط می دهیم سپس دو پایه موج را بر روی سطح کره موفین تین مساو ی قرار می دهیم

در روش APW در مورد مقادیری از انرژی که به ازای آن مقدار ul(R,E) بر روی سطح کره موفین تین صفر می شود، مشکل مجانبی وجود دارد. یعنی اگر بخواهیم شرط پیوستگی را اعمال کنیم Alm  نامحدود می شود.

عملا در این حالت نمی توان شرط پیوستگی را اعمال کرد و در نتیجه دو نوع پایه از یکدیگر مستقل می شوند و این یک نارسایی است.

همچنین به دلیل تغییرات زیاد Alm در حوالی نقطه مجانب تغییرات دترمینان هم زیاد بوده و انجام محاسبات مشکل است.

ضرایب Alm و Blm که هر دو به Kn بستگی دارند از مساوی قرار دادن توابع پایه و شیب آنها در سطح کره موفین تین حاصل می شوند.

در روش LAPW علاوه بر توابع پایه، مشتق آنها نسبت به r نیز به ازای r = RMT پیوسته هستند.
عباراتی که در این روش برای Alm و Blm به دست می آیند به گونه ای است که دیگر مشکل مجانبی بروز نمی کند.


چون دیگر El ویژه مقدار انرژی کان شم نیست با یک مساله ویژه مقداری خطی روبرو هستیم و جواب تنها با یک مرحله قطری سازی به دست می آید.


دانلود با لینک مستقیم


پاورپوینت درباره روشهای حل معادلات کان - شم