16 ص
تولید داربست های پلیمری : انجماد – خشک سازی
PROCESSING OF POLYMER SCAFFOLD : FREEZE - DRYING
کیومین وانگ و کوین – ای – هیلی
داربست های پلیمری بکار رفته به عنوان جانشین برای ماتریس برون سلولی ارثی (ECM)، برای بازسازی استخوان، غضروف، کبد، پوست و بافتهای دیگر استفاده میشود. پلی لاکتید (PL)، پلی گلیکولید (PG) و کوپلیمرهای آنها (PLG) مواد مناسبی برای اعضاء جانشین به شمار می روند، زیرا در هنگام کاشت در اثر هیدرولیز بطور تصادفی تخریب شده و محصولات تخریبی آنها به شکل دی اکسید کربن و آب کلاً از بدن خارج میشود.
یک داربست ایده آل باید دارای تخلخل مناسب برای انتشار مواد غذایی بوده و امکان پاکسازی مواد زائد را داشته و دارای پایداری مکانیکی مناسبی جهت تثبیت و انتقال بار باشد. علاوه بر این، شیمی سطح ماده باید چسبندگی سلول و علامت دهی داخل سلولی را به نحوی ارتقاء دهد که سلول ها فنوتیپ طبیعی خودشان را بروز دهند. برای رشد سریع سلول، داربست باید همچنین دارای میکرو ساختار بهینه باشد (برای مثال، اندازه خلل و فرج، شکل، و مساحت ویژه سطح). اثر اندازه خلل و فرج کاشتن بر بازسازی بافت توسط آزمایشاتی که نشان دهنده اندازه خلل و فرج بهینه برای فیبر وبلاست درون رست بین 20 و برای بازسازی پوست یک پستاندار بالغ و بسته به مکانیزم، برای بازسازی استخوان است، مشخص میشود. بدین ترتیب، هدف اصلی در ساخت داربست ها برای بازسازی بافت، کنترل دقیق اندازه خلل و فرج و تخلخل است.
16 ص
تولید داربست های پلیمری: پردازش اسفنج گازی
PROCESSING OF POLYMER SCFFOLDS : GAS FOAM PROCESSING
توماس- پی- ریچارد سون، مارتین-سی- پیترز و دیوید- جی- مونی
مهندسی بافت وعده بزرگ تهیه اندام های کاملاً عملیاتی برای رفع مشکل کمبود عضو اهدایی را داده است. روش های متداول آزمایشگاهی تشکیل این گونه بافت ها را معمولاً از دستگاههای مختلط (هیبرید) شامل داربست های پلیمری زیست تخریب پذیر و سلول های این بافت ها استفاده می کنند. روش های متعددی در شکل دهی و پردازش پلیمرها برای استفاده در مهندسی بافت توسعه یافته است که هر فرایند مجزای آن، دارای ویژگی و عملکرد منحصر به فردی در تشکیل داربست های مهندسی بافت است. با توجه به این روش ها، پیشرفت های قابل ملاحظه ای در حال شکل گیری است که یکی از مهمترین آنها اسفنج سازی گازی است. اسفنج سازی گازی به دلیل قابلیت تخلخل پذیری بالای اسفنج های داربست پلیمری بدون به کارگیری دمای بالا یا حلال های ارگانیک (آلی) حائز اهمیت است. با حذف شرایط دمای بالا و حلال های آلی می توان مولکولهای زیست فعال بزرگ حاوی فاکتورهای رشد را با حفظ فعالیت زیستی در پلیمر مجتمع ساخت. (داربست های پلیمری را میتوان به عنوان حامل مواد مورد نیاز پروتئین ها برای ایجاد پاسخ سلولی (برای مثال، جابجائی، (مهاجرت) و تکثیر) و بستری برای چسبندگی سلول قلمداد کرد که هر دو برای رشد بافت های آزمایشگاهی بسیار مهم هستند. فعالیت آزمایشگاهی ما بر استفاده از این روش در پردازش کوپلیمرهای اسیدهای لاکتیک و گلیکولیک و کپسوله کردن پروتئین ها و پلاسمید DNA کد کننده پروتئین ها برای تغییر رفتار سلولی مورد نظر مهندسی بافت متمرکز می شود. این فصل نظریه و روند اسفنج سازی گازی را با ملاحظه جنبه عملی پردازش اسفنج مورد بحث قرار می دهد.
-پیشگفتار
اهداف مهندسی بافت فراهم سازی اندام های کارآمد یا جایگزینی قسمتی از بافت برای بیمارانی با ضعف (از کار افتادگی) اندام، آسیب یا بیماری وخیم است. محققان برای تهیه و تأمین جایگزین هایی کارآمد برای بافت، اقدام به تهیه پلیمرهایی نموده اند که در آنها گونه های سلولی متفاوت (مثل سلولهای استخوان زا و غضروف زا و غیره) را کشت داده اند؛ و بدین منظور کلیه رهیافت های مبتنی بر آزمونهای داخل بدن و یا خارج بدن موجود زنده (in vivo , in vitro) مد نظر قرار گرفته است. علاوه بر این، پیشرفت های قابل ملاحظه ای در استفاده از ترکیباتی که سبب تحریک بافت خود شخص گیرنده در پاسخ به دستگاه شده و تولید بافتی که تقریباً عملیات معادل بافت صدمه دیده یا غایب را انجام می دهد صورت گرفته است.
21 ص
PROCESSING OF POLYMER SCAFFOLDS : POLYMER – CERAMIC COMPOSITE FORMS
کاتو- تی – لاورن سین، هلن، اچ – لو، و یوسف خان
پلیمرها و سرامیک ها به طور جداگانه یا ترکیبی به شکل مکمل یا گزینه ای برای نسج آلوگرفت و زنوگوفت به عنوان جایگزین بافت سخت در کاربردهای دندانی و ارتوپدی بکار برده می شوند، و از آنجا که هر ماده خصوصیات ذاتی خود را دارد، برای کاربردهای خاصی مناسب خواهد بود. چندین پلیمر زیست تخریب پذیر در پروژههای تحقیقاتی و استفادههای بالینی برای کاربردهای ماهیچه ای – اسکلتی مورد آزمایش قرار گرفته اند. پلی ارتو استرها، پلی انیدریدها، پلی فسفازن ها و پلی آمینواسیدها همگی به عنوان جایگزین های استخوانی به واسطه تخریب پذیری منحصر به فرد و خصوصیات مکانیکی شان امتحان شده اند.
پلیمرهای تخریب پذیر خانواده پلی - هیدروکسی اسید شامل پلی لاکتیک اسید (PLA)، پلی گلیکولیک اسید (PGA) و کوپلیمر آن پلی لاکتیک – کو-گلیکولیک اسید (PLAGA) به طور گسترده به عنوان صفحات تثبیت، پیچ ها و پین ها و همچنین دستگاههای رهایش دارو و داربستهای مهندسی بافت مورد استفاده قرار میگیرند. سرامیک های مختلفی وجود دارند که به تنهایی یا به همراه پلیمر ها برای کاربردهای ارتوپدی ازجمله تری کلسیم فسفات، تتراکلسیم فسفات، هیدرو کسی آپاتیت و کامپوزیت های پایه مواد زیست فعال، بکار برده می شوند. این سرامیک ها با پلیمرهای تخریب پذیر و تخریب ناپذیر مختلفی ترکیب می شوند تا سبب اصلاح استحکام پلیمرها، چسبندگی به استخوان، تخلخل، و قابلیت تحریک درون رشد استخوان گردند. یک ار مطلوب ترین این ترکیبات، ترکیب PLAGA و هیدروکسی آپاتیت به شکل یک کامپوزیت چند کاره قابل استفاده در مهندسی بافت است با توجه به این موضوع، سه روش مختلف برای ایجاد داربست کامپوزیت PLAGA و هیدروکسی آپاتیت بیان میشود: فیلم پلیمر – سرامیک تولید شده توسط روش قالب گیری حلال، ساختارهای پلیمر- سرامیک سنتز شده توسط روش تجمع حلال و ساختارهای پلیمر- سرامیک سنتز شده با استفاده از روش ژل – ریز (ریزدانه).
مهندسی بافت را می توان به شکل کاربرد بیولوژیکی، شیمیایی و اصول مهندسی در جهت ترمیم، مرمت یا بازسازی بافت های زنده با استفاده از بیومواد، سلولها و فاکتورها به تنهایی و یا بصورت ترکیبی مورد استفاده قرارداد. هم سرامیک ها و هم پلیمرها دارای خصوصیات ذاتی کاملاً مجزایی بوده و هر یک از آنها بطور گسترده در شکل بیو مواد در بازسازی بافت های زنده بکار گرفته می شوند، که این کاربردها به خوبی در مدارک موجود ارائه شده است. برای مثال ، سرامیک ها در ترمیم بافت سخت از جمله کاربردهای ماهیچه ای – اسکلتی و دندان استفاده می شوند. پلیمرها نیز بطور گسترده در کل بدن به شکل جایگزین های موقت و دائم برای شریان ها استخوانها، و مفاصل و بازسازی پلاستیکی و غیره بکار می روند.
کاربرد مواد پلیمری در قرن حاضر به سرعت در رشتههای مختلف صنایع و از جمله صنایع ساختمانی در حال گسترش میباشد، یک کاربرد جدید و موفق از این مواد، ساخت بتنهای پلیمری است . بتنهای پلیمری، مخلوطی از حدود 80 تا 95 درصد پرکنندههای معدنی(و گاهی آلی) در 5 تا 20 درصد بایندرهای پلیمری میباشند. این بتنها نسبت به بتنهای رایج سیمانی مزایا و خواص برتری داشته(و در برخی موارد دارای خواصی منحصر به فرد میباشند) و همین مزایا و خواص برتر است که علیرغم قیمت بالاتر آنها، نسبت به بتنهای سیمانی، آنها را مورد استقبال روزافزون صنعتی قرار میدهد. از جملهء این خواص میتوان به استحکام و کرنشهای فشاری، خمشی و کششی بالاتر (چندین برابر بتنهای سیمانی)، میرایی (demping)، عمر سرویس ، مقاومت سایشی و ضربهای، مقاومت در مقابل تغییرات جوی، مقاومت در مقابل مواد شیمیائی و عوامل مخرب محیطی و صنعتی بیشتر و همچنین جذب آب و افت خواص کمتر اشاره کرد. انواع بتنهای پلیمری به لحاظ ویژگیهای خاص خود نظیر خواص تزئینی و دکوراسیونی عالی، در عین خواص مکانیکی و فیزیکی بهتر، رفته رفته جایگزین مناسبی برای سنگهای تزئینی مثل مرمر، انیکس و غیره میشوند. با انتخاب مناسبی از میزان بایندر پلیمری، نوع و میزان مناسبی از پرکننده یا پرکنندههای معدنی(و یا آلی) و همچنین به کار بردن افزودنیهای مناسب ، میتوان خواص بتنهای پلیمری را در یک طیف و محدودهء گستردهای تغییر داده و تنظیم نمود به گونهای که بتوان کلیهء نیازمندیهای مهندسی رایج در مورد مصالح، یعنی نیازمندیهای فیزیکی، مکانیکی، دینامیکی، الکترونیکی، حرارتی، شیمیائی، تزئینی و غیره را که توسط بتنهای سیمانی قابل تامین نیستند، برآورده ساخت . در پروژهء حاضر از مجموعهء انواع مواد پلیمری رایج در ساخت بتنهای پلیمری، سه نوع نسبتا پرمصرف آنها یعنی اپوکسی، پلیاستر و پلییورتان به همراه دو نوع پرکننده معدنی رایج یعنی سیلیس و کربنات کلسیم به کار برده شدهاند. برای مطالعه رفتار و خواص این بتنها و همچنین مطالعهء نحوهء ارتباط و وابستگی این خواص به پارامترهای متغیر فرمولاسیونی نظیر نوع و مشخصات بایندر پلیمری و همچین میزان درصد بار جامد، نوع و دانهبندی پرکننده، ترکیبات متنوعی از بایندر و مخلوط پرکننده تولید، و براساس استانداردهای بینالمللی تحت آزمونهای فشاری، خمشی، کششی(از نوع برزیلی)، دانسیته، جذب آب و غیره قرار گرفتهاند. این بررسیها نشان دادهاند که نمونههای بر پایه اپوکسی و پلیاستر استحکامهای بسیار بالا(چندین برابر خواص مشابه در مورد بتنهای سیمانی) و نمونههای بر پایهء پلییورتان ازدیاد طولهای بسیار زیادی دارند. بطور خلاصه نتایج نشان میدهند که استحکام فشاری نمونههای بتن پلیمری، بر پایه اپوکسی و پلیاستر تا 3/5 برابر، کرنش فشاری تا 2/5 برابر، استحکام کششی تا 8/5 برابر، استحکام خمشی تا 4 برابر و کرنش خمشی تا دهها برابر نسبت به بتن سیمانی بیشتر بوده و در عین حال جذب آب این نمونهها 10 تا 60 برابر کمتر از بتنهای سیمانی است . ضمنا بررسی نمونههای بتن بر پایه پلییورتان نشان میدهد که این مواد با توجه به میزان ازدیاد طولهای بسیار منحصر بفرد خود میتوانند به عنوان پوشش کفها از نوع مقاوم در مقابل سرخوردگی (Skid-resistant) و درزگیر بتنها و ... مورد استفاده قرار گیرند. دستیابی به خواص مکانیکی منطبق با نیازمندیها و خواص اشاره شده در مراجع فنی(و گاهی بهتر از آنها) در پروژه حاضر، مرهون انتخاب صحیح مواد و روش کار بوده است . سیمان گوگردی با استفاده از افزودنی بومی برای اولین بار توسط محققان پژوهشکده توسعه صنایع شیمیایی ایران وابسته به جهاد دانشگاهی ساخته شد.
لوله های فلزی پلیمری لوله هایی هستند که ساختمان آنها از سه لوله تو در تو تشکیل شده است به طوری که لوله داخلی از پلیمر ، لوله میانی از فلز ( مانند آلومینیوم یا فلز رنگی دیگر جوشکاری شده ) و لوله بیرونی از پلیمر است .
نکته اصلی در ساخت این لوله ، استفاده از ماده ویژه ای است که سطوح داخلی و بیرونی لوله فلزی ( لایه فلزی ) را با سطوح لوله های پلیمر داخلی و بیرونی به هم اتصال داده و به عبارتی هموژن کند .
باید توجه داشت که به کار گیری این ماده همچنین ، ضریب انبساط لوله پلیمری و لوله فلزی را به هنگام حرارت هماهنگ می کند و در حقیقت اساس دانش فنی و تکنولوژی ساخت لوله های فلزی پلیمری در این ماده نهفته است .
بدین ترتیب از تلفیق و ترکیب 3 لوله از مواد مختلف به صورت 5 لایه ( شکل 1 ) ( با احتساب دو لایه برای ماده ویژه ) . لوله ای تولید می شود که کلیه مزایای لوله های فلزی و پلیمری را به شرح زیر دارا بوده و از معایب آنها عاری است .