فرمت فایل : word(قابل ویرایش)
تعداد صفحات:39
فهرست مطالب:
روش های تلوریک ومگنتونلوریک
اصول وخصوصیات میدان های مگتونلوریک و جریان تلوریک
تجهیزات صحرایی مورد نیاز:
روش مگنتوتلوریک در اکتشافات نفتی:
اصول روش MT:
3- جمع آوری اطلاعات MT وتجهیزات MT
پردازش داده های MT
مدل سازی تفسیر دادههای MT
مطالعات موردی MT
پیشرفتهای جدید در اکتشافات با روشهای الکترومگنتیک
اصول مگنتوتلوریک
تاریخچه :
مگنتوتلوریک مدرن
اکتشافات راندگی با MT
آشکارسازی مستقیم هیدروکربنها با MT
اکتشافات منابع انرژی ژئوترمال به کمک مگنتوتلوریک
روش های تلوریک ومگنتونلوریک
اصول وخصوصیات میدان های مگتونلوریک و جریان تلوریک
وجود جریانات بزرگ مقیاس در زمین، نخستین بار « » در سال 1847 در هنگام مطالعه روی سیستم های تلگراف مشخص شد. ثبت کننده های جریانات تلوریک در قرن 19 ،پاریس وبرلین قرار داشتند. اما امروزه درنقاط مختلف دنیا این ثبت کننده درنقاط مختلف وجود دارند.
منشا جریان های تلوریک درخارج از کره ی زمین قرار دارد توفان های خورشیدی وشفق های قطبی یکسری نوسانات دوره ای وگذرا را ایجاد می کنند که باعث ایجاد نوساناتی در میدان مغناطیسی زمین می شوند، این نوسانات میدان مغناطیسی بر روی جریانات یونوسفر زمین تاثیر می گذارند ویکسری جریانات را در آن القا می کنند. و جریانات یونوسفریک نیز به نوبه ی خود جریانات تلوریک را در درون زمین القا می کند. میدان های مغناطیسی دوره ای ایجاد شده توسط جریانات یونوسفریک، در حد فاصل بین یونوسفر و سطح زمین به مقدار جزئی دچار تضعیف وترقیق می شوند. اما قسمتی که به داخل زمین نفوذ می کند جریانات تلوریک را ایجاد می کند.
این حلقه های بسیار بزرگ جریان، میلیون ها کیلومتر مربع از سطح زمین را می پوشانند ونکته ی جالب اینکه این حلقه های جریان نسبت به خورشید ثابت اند و بصورت یکی در میان ساعتگرد و پادساعتگرد هستند. درعرض های جغرافیایی متوسط این جریانات دوتا ماکزیمم ودو مینی موم در طول روز دارند. در عرض های جغرافیایی پایین وتردیک استوا، این جریانات فقط یک ماکزیمم ویک مینی موم در طول روز دارند ودامنه ی این جریانات نیز به طور قابل ملاحظه ای کوچکتر است. میدان های الکتریکی ناشی از این جریانات تا بیش از و میدان های مغناطیسی آن ها نیز در حدود چند میلی کاما هستند.
بطور کلی ، میدان های مغناطیسی ناشی از جریانات تلوریک نوساناتی هستند که شدتشان با آشفتگی های الکتریکی در یونوسفر زمین متغیر است. این نوسانات میدان مغناطیسی در فرکانس هایی به بزرگی 100 کیلومتر هرتز اتفاق می افتند ولی اکثر این نوسانات فرکانسی کمتر از این مقدار را دارند.
یک منبع فرکانس بالا برای نوسانات طوفانی های الکتریکی ( مانند رعد وبرق) اگر چه محل وقوع این طوفان های الکتریکی تصادفی است اما بیش تر این طوفان ها در مناطق استوایی مانند برزیل، آفریقای مرکزی ومالایا اتفاق می افتد. بخشی از انرژی این رعد و برق ها به نوسانات الکترومغناطیسی تبدیل می شود که در فضای بین یونوسفر و زمین منتشر می شود جریانات القا شده بوسیله ی این میدان های الکترومغناطیسی در زیر زمین در اکتشافات تلوریک ومگنتو تلوریک مفید هستند به خصوص به این دلیل که این جریانات قله های دامنه ای در چندین فرکانس مجزای 8 و 14 و 760 هرتز دارند.
برای بررسی تغییرات سالیانه ی جهت و دامنه ی سیگنال های تلوریک و مگنتوتلوریک در فرکانس های 1 و 8 و 145 و 3000 هرتز، چهار گیرنده ی تلوریک که با چهار جفت الکترود مرتبط هستند را در یک محلی که دور از خطوط انتقال جریان باشد، قرار می دهند. فاصله ی بین هر جفت الکترود در حدود 30 متر است. جهت این 4 جفت الکترودها نیز تحت زاویای 343 و 28 و 73 و 118 درجه نسبت به جهت شمال است. سیگنال 3000 هرتزی بطور ناگهانی در هنگام طلوع و غروب خورشید درهر 4 جهت به ترتیب افزایش و کاهش پیدا می کند.
تجهیزات صحرایی مورد نیاز:
الف) تجهیزات صحرایی مورد نیاز برای جریان تلوریک : بدلیل آنکه اندازه گیری مستقیم جریان تلوریک ممکن نیست ما شیب پتانسیل بین الکترودهای قرا گرفته روی زمین را اندازه گیری می کنیم. همانند روش sp در اینجا نیز برای اندازه گیری شیب پتانسیل ناشی از جریانات تلوریک از الکترودهای غیر پلاریزه استفاده می شود. صفحات سربی که از لحاظ شیمیایی غیر فعال هستند برای این کار مناسب اند.
الکترودها به یک تقویت کننده وتقویت کننده به یک مثبت کننده متصل است. اگر فرکانس های خاصی مورد توجه باشند فیلترهایی را در بخش تقویت کننده قرار می دهند.
بدلیل وجود تغییرات بزرگ در دامنه ی سیگنال نسبت به زمان دو گسترش الکترودی مورد نیاز است یک جفت الکترود در ایستگاه مبنا یا BOSE قرار می گیرد جفت الکترود دیگر بعنوان جفت الکترود متحرک استفاده می شود. همچنین از آنجائیکه جهت سیگنال های جریان های تلوریک با زمان تغییر می کند، هم در ایستگاه مبنا و هم در ایستگاه صحرایی ازدو جفت الکترود عمود بر هم که یکی شمالی- جنوبی و دیگری شرقی- غربی است استفاده می کنند.
با استفاده از این تجهیزات ما می توانیم تغییرات مولفه ی افقی میدان الکتریکی را از لحاظ دامنه به فاز و فرکانس در دو ایستگاه مبنا و ایستگاه صحرایی با یکدیگر مقایسه کنیم و از آن جهت اکتشافات نفتی وکانه استفاده کنیم.
فواصل الکترودی برای مطالعات ساختاری وسوندینگ عمیق جهت اکتشافات نفتی بطور معمول بین 100 تا 600 متر است و برای جستجوی کافی ممکن حدود 30 متر یا کمتر باشد.
ب) تجهیزات صحرایی لازم جهت مگنتوتلوریک: تجهیزات MT پیچیده تر از تجهیزات جریان تلوریک است. در هر ایستگاه دو مولفه اندازه گیری می شود اما هیچ ایستگاه مبنایی مورد نیاز نیست.
اگر دوره ی تناوب جریان ها طولانی باشد می توان میدان مغناطیسی را با یک مگنتومتر فلاکس گیت اندازه گیری کرد. اما در بیشتر موارد دوره ی تناوب کوتاه تر از این است و از یک سنسور استفاده می شود که این سنسور شامل یک سیم پیچ با تعداد زیادی دور سیم روی یک قاب بزرگ یا یک سلونوئید دراز با یک فریت است که در هسته ی آن قرار گرفته است. سه مولفه مغناطیسی در هر ایستگاه MT اندازه گیری می شود دو تا افقی و یک عمودی.
تجهیزات MT برای فرکانس هایی در محدوده ی 1 هرتز تا 10 کیلوهرتز طراحی شده اند. سیم پیچ مورد نیاز در کار MT لازم است که در یک گودال کم عمق نصب شود تا از هر گونه حرکتی بدور باشد چرا که کوچکترین حرکت نونیزهایی را در ولتاژ اندازه گیری شده ایجاد می کند.
روش مگنتوتلوریک در اکتشافات نفتی:
مقدمه: انعکاس لرزه ای برای دهه ی متوالی ابزار استانداردی برای اکتشافات نفت و گاز بوده است. و تقریباً تمام ذخایر با استفاده از روش لرزه ای اکتشافات شده اند. در مورد هدف های اکتشافی دشوار که روش لرزه ای موفقیت کمی داشته محققان به فکر استفاده از دیگر روش های ژئوفیزیکی افتاده یکی از این روش های ژئوفیزیکی MT است توانایی حل ساختارهای زمین شناسی را دارد که روش لرزه ای در آن ها موفقیت کمی داشته است. مثلاً در مواردی که یک پوشش بازالتی یا وکلانیک با سرعت عبورموج بالا روی سنگهای زیرین را می پوشاند و یا در مورد ساختارهای راندگی که روش های لرزه ای نتیجه ی خوبی نمی دهد می توان از MT استفاده کرد.
اصول روش MT:
روش مگنتوتلوریک یک عمل سوندینگ EM در حوزه ی فرکانسی است که برای مشخص کردن ساختارهای الکتریکی در زیر سطح زمین استفاده می شوند. این روش از میدان های الکترومگنیک طبیعی که در یک محدوده ای از HZ 001/0 تا KHZ10 هستند استفاده می کند. این میدان های اولیه، میدان های الکتریکی و مغناطیسی ثانویه را در زمین رسانا ایجاد می کنند. تغییرات گذرای میدان های الکتریکی و مغناطیسی ثبت شده در سطح زمین، خصوصیات الکتریکی زمین از قبیل مقاومت ویژه و رسانایی را مشخص می کند.
جریانات الکتریکی بوجود آمده در زمین در اثر تغییرات میدان مغناطیسی، جریانات تلوریک نامیده می شوند. که در اینجا مگنتوتلوریک نامیده شده اند. امواج الکترومغناطیسی که سیگنال های MT را می سازند.
دو منشأ دارند: 1- رعد و برق که سیگنال های بالای یک هرتز را می سازند 2- جریانات الکتریکی شارش یافته در یونوسفر زمین که سیگنال های زیر HZ1 را می سازند.
روش MT کاربردهای گسترده ای دارد از اکتشافات کم عمق مانند ژئوتکنیک، آب زیر زمینی، زیست محیطی گرفته تا اکتشافات عمیق که شامل منابع کافی ژئوترمال ونفت است.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:30
فهرست مطالب:
آشنایی با بعضی از کاربردهای انرژی هسته ای
انرژی هسته ای و کاربرد آن در کشاورزی
اثر مقادیر مختلف پرتو گاما بر روی رشد و نمو گیاه تک لپه گندم و دو لپه لوبیا
کاربردهای انرژی هسته ای
▪ نیروگاه هسته ای:
▪ بمب های هسته ای:
▪ پیل برق هسته ای Nuclear Electric battery:
▪ کاربردهای پزشکی:
تشعشعات هسته ای کاربرد های زیادی در کشاورزی دارد که مهم ترین آنها عبارتست از:
▪ کاربردهای صنعتی:
پیل برق هسته ای Nuelear Electric battery:
کاربرد انرژی هسته ای در دسترسی به منابع آب :
کاربردهای کشاورزی:
کاربردهای صنعتی:
• کشف عناصر نایاب در معادن
انرژی هسته ای در پزشکی هسته ای و امور بهداشتی:
کاربرد انرژی هسته ای در تولید برق :
برتری انرژی هسته ای بر سایر انرژیها:
کاربردهای صلح آمیز انرژی هسته ای
۱ _ بخش پزشکی و بهداشتی:
۲ _ کاربرد انرژی اتمی در بخش دامپزشکی و دامپروری
۳ _ کاربرد تکنیک های هسته ای در مدیریت منابع آب
۴ _ کاربرد انرژی هسته ای در بخش صنایع غذایی و کشاورزی
۵ _ کاربرد انرژی اتمی در بخش صنایع.
۶ _ کاربرد انرژی اتمی در تولید الکتریسیته.
کاربرد غیر نظامی فناوری هستهای
کاربردهای انرژی هسته ای در صنعت نفت
نقش انرژی هسته ای در صنعت نفت؛
مواردی از کاربرد انرژی هسته ای در صنعت نفت؛
منابع :
آشنایی با بعضی از کاربردهای انرژی هسته ای
استفاده از انرژی هسته ای، یکی از اقتصادی ترین شیوه ها در دنیای صنعتی است و گستره عظیمی از کاربردهای مختلف، شامل تولید برق هسته ای، تشخیص و درمان بسیاری از بیماریها، کشاورزی و دامداری، کشف منابع آب و ... را در بر می گیرد.
انرژی هسته ای در مجموع، مانند یکی از انرژی های موجود در جهان مثل انرژی بادی، آبی، گاز و نفت و ... است، اما در مقایسه با آنها جزو انرژی های پایان ناپذیر شمرده می شود، که از نظر میزان تولید انرژی پاسخگوی نیازهای بشر خواهد بود. یعنی انرژی حاصل از تبدیل ماده به انرژی برابر است با جرم ماده ضرب در سرعت نور به توان 2 که نشان دهنده انرژی زیاد حاصل از تبدیل مقدار کمی ماده به انرژی است.
انرژی هسته ای کاربردهای متعددی دارد که در یک تقسیم بندی کلی میتوان آن را به نظامی و غیرنظامی یا صلح جویانه تقسیم کرد. تولید برق، یکی از نیازهای روزمره و فوق العاده تأثیر گذار بر زندگی مردم است که اگر با صرفه اقتصادی بیشتر و آلودگی هرچه کمتر زیست محیطی همراه باشد به یقین خواهد توانست در اقتصاد کشور نقش بسزایی ایفا کند. انرژی هسته ای که از این دو شاخصه مهم برخوردار است، می تواند در این زمینه به کمک نیروگاه ها آمده و جهان را از بحران محدودیت منابع فسیلی رهایی بخشد. به همین دلیل، نیروگاه برق اتمی، اقتصادی ترین نیروگاهی است که امروزه در دنیا احداث می شود.
یکی از روشهای تشخیصی و درمانی ارزشمند در طب، پزشکی هسته ای است که در آن از ایزوتوپهای رادیو اکتیو (رادیو ایزوتوپ) برای پیشگیری، تشخیص و درمان بیماریها استفاده می شود. گفتنی است از رادیو ایزوتوپ ها 60 سال است که برای شناسایی و درمان بیماریها استفاده می شود. با کشف شیوه های درمانی بیشتر و پیشرفت این راهها استفاده از رادیو ایزوتوپ هم گسترده تر شده است.
پرتودهی مواد غذایی، عبارت است از قرار دادن ماده غذایی در مقابل مقدار مشخصی پرتو گاما، به منظور جلوگیری از جوانه زنی بعضی محصولات غذایی مانند پیاز و سیب زمینی و همچنین کنترل آفات انباری، کاهش بار میکربی و قارچی بعضی از محصولات مانند زعفران و ادویه و تأخیر در رسیدن بعضی میوه ها به منظور افزایش زمان نگهداری آنها ..... در بخش کودها مطالعات مربوط به تغذیه گیاهی نیز از این روش استفاده می شود مانند نحوه جذب کودها و عناصر و ... .
با استفاده از تکنیک پرتوتابی هسته ای می توان تغییرات ژنتیکی مورد نظر را برای اصلاح محصول در توده های گیاهی به کار برد. برای نمونه کشور پاکستان که بیابان های وسیع و زمین های بایر فراوانی دارد، از راه کشاورزی هسته ای، ارقام پرمحصولی از گیاهان را در همین مناطق پرورش داده است.
نقش تکنیک های هسته ای در پیشگیری، کنترل و تشخیص بیماریهای دامی، نقش تکنیک های هسته ای در تولید مثل دام، نقش تکنیک های هسته ای در تغذیه دام، نقش تکنیک های هسته ای در اصلاح نژاد دام، نقش تکنیک های هسته ای در بهداشت و ایمنی محصولات دامی و خوراک دام.
کاربرد تکنیک های هسته ای در مدیریت منابع آب همان بهبود دسترسی به منابع آب جهان، یکی از زمینه های بسیار مهم توسعه شناخته شده است. بیش از یک ششم جمعیت جهان در مناطقی زندگی می کنند که دسترسی مناسب به آب آشامیدنی بهداشتی ندارند. تکنیک های هسته ای برای شناسایی حوزه های آبخیز زیرزمینی، هدایت آبهای سطحی و زیرزمینی، کشف و کنترل آلودگی و کنترل نشت و ایمنی سدها به کار می رود. از این تکنیک ها، برای شیرین کردن آب شور و آب دریا نیز استفاده می شود.
نمونه هایی برای طرح کاربرد انرژی هسته ای در بخش صنعت عبارتند از: تهیه و تولید چشمه های پرتوزایی کبالت برای مصارف صنعتی، تولید چشمه های ایریدیم برای کاربردهای صنعتی و بررسی جوشکاری در لوله های نفت و گاز، تولید چشمه های پرتوزا برای کاربردهای مختلف در علوم و صنعت از قبیل طراحی و ساخت انواع سیستم های هسته ای برای کاربردهای صنعتی مانند سیستم های سطح سنجی، ضخامت سنجی، چگالی سنجی و نظایر آن، اندازه گیری زغال سنگ، بررسی کوره های مذاب شیشه سازی برای تعیین اشکالات آنها، نشت یابی در لوله های انتقال نفت با استفاده از تکنیک هسته ای و ... .
انرژی هسته ای و کاربرد آن در کشاورزی
در تامین غذا برای چنین جمعیت در حال رشدی، کشت گیاهان زراعتی گندم(گیاه تک لپه) و لوبیا (گیاه دو لپه) به دلیل دارابودن ارزش غذایی بالا اهمیت ویژه أی پید کرده است.
● اثر مقادیر مختلف پرتو گاما بر روی رشد و نمو گیاه تک لپه گندم و دو لپه لوبیا
افزایش روز افزون جمعیت بشری یکی از معضلات دنیای متمدن امروزی است که خود مشکلات جدیدی از جمله کمبود مواد غذایی در اکثر نقاط جهان و بخصوص کشورهای در حال توسعه به همراه داشته است.
در تامین غذا برای چنین جمعیت در حال رشدی، کشت گیاهان زراعتی گندم(گیاه تک لپه) و لوبیا (گیاه دو لپه) به دلیل دارابودن ارزش غذایی بالا اهمیت ویژه أی پید کرده است. در این تحقیق با استفاده از تیمار بذرهای گندم(رقم مهدوی) و لوبیا (رقم لوبیا سفید دانشکده) و مقادیر مختلف پرتو گاما (صفر، ۵۰، ۱۰۰، ۱۵۰، ۲۰۰، ۲۵۰، ۳۰۰، ۳۵۰، ۴۰۰ گری) تغییرات مورفولوژیکی و برخی از پارمترهای رشد (ارتفاع گیاه، سطح برگ، تعداد برگ، وزن تر و خشک اندام هوایی، وزن خاکستر اندام هوایی، مقدار خاکستر اندام هوایی، خاکستر اندام هوایی، مقدار فسفر و پتاسیم گیاه، تعداد سنبله و تعداد دانه در هر گیاه، وزن دانه، درصد جوانه زنی و رشد بذر) مطالعه گردید. برای هر تیمار مذکور سه تکرار در نظر گرفته شد و در هر تکرار(هرگلدان) پانزده بذر کاشته شد. قبل از اعمال هر تیمار بذرها به دو گروه خشک و مرطوب تقسیم بندی شدند. میزان رطوبت در بذرهای گندم بین ۱۴-۱۲ درصد و در لوبیا بین ۵/۱۳-۱۳ درصد در نظر گرفته شد. شرایط کاشت و آبیاری در هر یک از ارقام مورد آزمایش یکسان در نظر گرفته شد.
پس از رشد گیاهان نسل والد و تولید خوشه (در گندم) و لگوم(در لوبیا) بذرهای حاصل از آنها بدون اینکه عملیات پرتوتابی راپشت سر بگذارند، در شرایطی همانند والدین کاشته شدند. در گیاهان نسل M۱ نیز تغییرات مورفولوژیکی و برخی از پارامترهای رشد بررسی گردید.
در تمام صفات مورد مطالعه با افزایش مقدار پر تو، پارامترهای رشد کاهش می یابد. به نظر می رسد که در مقادیر بالا پرتو شدت نقص های کروموزومی و فیزیولوژیکی بیشتر شده باشد. از جمله تغییرات مورفولوژیکی در گندم باریک شدن برگها و کوتاه شدن میانگره ها رامی توان ذکر کرد که در مقادیر ۱۵۰ و ۳۰۰ گری پرتو گاما در نسلهای M و M۱مشاهده می شود. این تغییرات در گیاهان حاصل از بذرهای مرطوب لوبیا به صورت تقسیم لپه به سه یا چهار قسمت با اندازه نامساوی، تغییر شکل برگی، رشد نامتعادل پهنک و کلروز برگی در مقادیر ۲۵۰ تا ۳۰۰ گری در گیاهان حاصل از بذرهای خشک در مقادیر ۵۰ گری پرتو گاما نمایان است.
مطالعه پارامترهای رشد در گیاهان نسل M گندم و لوبیا نشان می دهد که مقادیر ۱۰۰ و ۱۵۰ گری پرتو گاما موجب افزایش عملکرد گیاه می گردد. مطالعه پارامترهای رشد در گیاهان M۱ و مقایسه آن با نسل M نشان داد که از نظر درصد رشد، سطح برگ، تعداد برگ تفاوتی بین نسلها وجود ندارد. در حالیکه ارتفاع گیاهان حاصل از بذرهای مرطوب در نسل M در مقادیر بالاتر از ۱۵۰ گری و در نسل M۱ در مقادیر بالاتر از ۲۰۰ گری کاهش معنی داری راو نسبت به شاهد نشان می دهد. همچنین وزن تر اندام هوایی در گیاهان حاصل از بذرهای مرطوب در نسل M در مقادیر ۲۰۰ گری و در نسل M۱در مقادیر ۱۰۰ و ۲۰۰ گری افزایش معنی داری در مقایسه با شاهد نشان می دهد.
وزن خشک اندام هوایی در گیاهان نسل M۱ در مقایسه با نسل M کاهش داشت ولی در مقدار ۳۰۰ گری پرتو گاما استثنائاً افزایش چشمگیری رانشان داد . به نظر می رسد که وقوع موتاسیون چنین تغییری راموجب شده است. البته اثبات صحت و یا سقم فرضیه فوق نیاز به مطالعات بیشتر در نسلهای بعدی دارد، مقایسه نتایج حاصل از گیاهان نسل M و M۱ لوبیا نشان می دهد که در دو نسل درصد رشد، سطح برگ، ارتفاع گیاه و وزن خشک از یک روند مشابهی تبعیت می کند. در گیاهان نسل M وزن تر اندام هوایی در مقادیر بالاتر از ۱۵۰ گری کاهش معنی داری در مقایسه با شاهد دارد در حالیکه در مقادیر ۵۰ تا ۱۵۰ گری تعداد برگ نسبت به شاهد افزایش معنی داری رادارد.
در حالیکه در نسل M۱ وزن تر اندام هوایی در مقادیر بالاتر از ۱۰۰ گری کاهش معنی داری نسبت به شاهد داشته در حالیکه تعداد برگ در مقدار مذکور افزایش معنی داری رادر مقایسه با شاهد.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:37
مقدمه:
جهانی سازی و تغییرات فناوری، فرایندهایی که در پانزده سال اخیر سرعت یافته اند، باعث ایجاد یک اقتصاد جدید جهانی شده اند که با فناوری تقویت شده و سوخت (انرژی) آن بوسیله اطلاعات تامین و با دانش رانده می شود. ضرورت این اقتصاد جهانی مستلزم نوع و هدف موسسات آموزشی است. از آنجاییکه روند کنونی به سوی کاهش اطلاعات ناقص و دسترسی به اطلاعات صحیح رو به رشد است، مدارس دیگر نمی توانند شاهد صرف زمان برای انتقال یک مجموعه اطلاعات تجویز شده از معلم به دانش آموز در طی یک مقطع ثابت زمانی باشند، بلکه مدارس باید فرهنگ "آموزش برای یادگیری" را ترویج دهند. بعنوان مثال فراگیری دانش و مهارتهایی که آموزش مستمر را درطول حیات فرد ممکن می سازند.طبق گفته آلوین تافلر بی سواد قرن 21،کسانی نخواهند بود که خواندن ونوشتن نمی دانند بلکه کسانی هستند
که نتوانند یادبگیرند یا یاد دهند.
نگرانی در مورد کیفیت و روش آموزشی با ضرورت توسعه فرصتهای آموزشی آنهایی که بیشترین آسیب پذیری را براثر جهانی سازی دارند همزیستی دارد. عموما“ تغییرات جهانی سازی درکشورهای درحال توسعه،برروی گروههای کم درآمد، دختران و زنان و خصوصا“ کارگران کم مهارت، همچنین همه گروهها برای کسب و بکارگیری مهارتهای جدید فشار می آورد. سازمان جهانی کار نیازهای آموزشی وپرورشی در اقتصاد جدید جهانی را بعنوان "آموزش پایه برای همه "، "مهارتهای کاری برای همه" و "آموزش مادام العمر برای همه " تعریف می کند.
فناوری های اطلاعات و ارتباطات (ICT) شامل، رادیو وتلویزیون و همچنین فناوری های دیجیتال جدیدتر مانند کامپیوتر واینترنت، بعنوان ابزارهای بالقوه نیرومند و فعال کننده اصلاح و تغییرات آموزشی معرفی می شوند.
ICT های مختلف وقتی بطور مناسب بکار برده می شوند می توانند به توسعه دسترسی به آموزش کمک کرده و رابطه بین آموزش و کارگاههای روزافزون دیجیتالی را تحکیم کنند، همچنین کیفیت آموزش را با کمک ایجاد آموزش و یادگیری در یک پروسه فعال متصل به زندگی حقیقی بالا ببرند. بهرحال تجربه مطرح شدن ICT های مختلف در کلاس درس و دیگر مکانهای آموزشی درسراسر جهان در طی چند دهه گذشته بیانگر اینست که تحقق کامل منافع بالقوه آموزشی ICT ها خودکار نیست. یکپارچه سازی موثر ICT ها در سیستم آموزشی یک فرایند پیچیده است که نه تنها فناوری را درگیر می کند بلکه برنامه آموزشی و فن آموزش، آمادگی نهادی، شایستگی های معلم و سرمایه گذاری دراز مدت را هم درگیر می کند. درحقیقت چنان اهمیت حیاتی به موضوع می دهد که بدست آوردن فناوری آسانترین قسمت آن است.
1-تشریح واژه ها
1-1 ICT ها و کاربرد انواع رایج آنها درتحصیلات و آموزش
ICT ها معرف فناوری های اطلاعات وارتباطات هستند و برای این منظور، بعنوان یک مجموعه متفاوت از ابزارها و منابع فناوری، بکاررفته برای برقراری ارتباط ,ایجاد،انتشار، ذخیره کردن و مدیریت اطلاعات تعریف شده اند. این فناوری ها شامل , کامپیوتر، اینترت، فناوری های پخش برنامه ( رادیو وتلویزیون) وتلفن است.
درسالهای اخیر موج شدیدی ازعلاقه عمومی درمورد اینکه چگونه کامپیوترها و اینترنت می توانند بهتر تحت کنترل درآیند تا کارایی و تاثیر آموزش را درهمه سطوح ودرهردو زمینه رسمی و غیررسمی پیشرفت دهند، آغاز شده است. اما ICT ها بیشتر از فقط یک فناوری هستند, هرچند امروزه به فناوری های قدیمی مانند تلفن، رادیووتلویزیون، توجه کمتری می شود ولی درگذشته بعنوان ابزارهای آموزشی استفاده می شدند . مثلا“ رادیو و تلویزیون برای بیش از چهل سال برای آموزش باز و از راه دور بکاررفته اند. دراین راستا هرچند چاپ گرانترین روش باقی مانده است ولی دردسترس ترین بوده و لذا درکشورهای توسعه یافته ودرحال توسعه برجسته ترین مکانیسم ارایه است.
کاربرد کامپیوتر و اینترنت هنوز در کشورهای درحال توسعه مراحل اولیه را می گذراند و اگر بخواهند بکارگرفته شوند بعلت زیرساخت محدود، دسترسی به آنها گران تمام می شود. بعلاوه فناوری های مختلف برای اینکه بعنوان یک مکانیسم منحصربفرد ارایه شوند، نوعا“ بصورت ترکیبی استفاده شده اند. بعنوان مثال انجمن رادیو اینترنتی Kothmale، پخش اخبار رادیویی و فناوری اینترنت و کامپیوتر را با هم بکارمی برد تا مردم به آسانی بتوانند در اطلاعات و ایجاد فرصتهای آموزشی در یک جامعه روستایی (سری لانکا) سهیم شوند.
دانشگاه غیرحضوری انگلستان (UKOU) در سال 1969 بعنوان اولین موسسه آموزشی در سراسر جهان به آموزش از راه دور اختصاص یافت و بندرت برموضوعات چاپی تکیه دارد. همچنین دانشگاه غیر حضوری ایندراگاندی در هند کاربرد چاپ، نوارهای صمعی وبصری، پخش رادیویی و تلویزیونی و فناوری های کنفرانسی را با هم آمیخته کرده است.
1-2 آموزش از راه دور
هرچند عرفا“ با تحصیلات بالاتر و آموزش واحدی آمیخته شده، اما آموزش از راه دور شامل یادگیری در همه سطوح، چه رسمی و چه غیررسمی می شود. آموزش از راه دور یک شبکه اطلاعاتی شامل، اینترنت، یک اینترانت (LAN) یا (WAN)، را بطور کلی یا جزیی برای برقراری دوره ها، اثرات متقابل و یا تسهیل امور بکار می برد. برخی آموزش ONLINE ی را ترجیح می دهند که درآن، یادگیری برپایه وب بعنوان زیرمجموعه ای از آموزش از راه دور است که به کاربرد یک جستجوگر اینترنتی ( مانند Internet explorer یا Netscape ) برای این منظور اشاره دارد.
1-3 یادگیری مختلط
یک واژه دیگر که امروزه درحال رواج یافتن است یادگیری مختلط است. و آن دربرگیرنده مدلهای یادگیری است که سیستم سنتی کلاس درس با شیوه های یادگیری از راه دور آمیخته می شود. مثلا“ دانش آموزان در یک کلاس سنتی می توانند به هردو روش یعنی استفاده از موضوعات چاپی یا موضوعات online رجوع کنند وبا معلم خود از طریق chat (گفتگو همزمان) ارتباط داشته باشند ویا از پست الکترونیکی استفاده کنند و یک دوره آموزشی برپایه وب هم می تواند به دوره اضافه شود. یادگیری مختلط بدینوسیله رواج یافت که دریافت، آموزش کامل صرفا“ در یک محیط الکترونیکی حاصل نمی شود، بخصوص اینکه نقش معلم بکلی نادیده گرفته شود. درعوض باید موضوعات آموزشی ونتایج آنها و اهمیت فرد، ویژگیهای دانش آموزان و زمینه آموزشی بمنظور رسیدن به یک ترکیب مطلوب روشهای آموزشی درنظر گرفته شود.
1-4 آموزش غیر حضوری وباز
آموزش باز و از راه دور بوسیله جوامع مشترک المنافع آموزشی بعنوان " یک راه ایجاد فرصتهای آموزشی که با جداسازی معلم و دانش آموز از نظر زمانی و مکانی یا هردو " مطرح شد، آموزشی که از بعضی جهات بوسیله یک نهاد یا موسسه تصدیق شده است. کاربرد یک دسته مختلف از وسایل ارتباطی مانند چاپ، الکترونیک، ارتباطات دوطرفه، که به دانش آموزان و معلمان اجازه برقراری ارتباط متقابل را می دهد و همچنین امکان ملاقاتهای حضوری و یک تقسیم کار درتولید وبرقراری دوره های آموزشی.
1-5 مفهوم محیط دانش آموز محور
شورای ملی پژوهش ایالات متحده، محیطهای دانش آموز محور را بعنوان "محیطهایی که توجه خاص به دانشه، مهارتها ,رفتارها و باورهای دانش آموزان درکلاس دارند" تعریف کرده است. مفهوم دانش آموز محوری از یک تئوری آموزشی بنام ساختارگرایی ناشی می شود، که آموزش را بعنوان یک پروسه که درآن افراد "ساختن وایجاد کردن" را براساس دانش وتجربه قبلی خود معنی می کنند، نشان می دهد. این محیط، تجربه افراد را قادر می سازد که مدلها یا الگوهای فکری را بنا کنند تا براثر آن معنی وسازمانی برای تجربیات متعاقب ایجاد شود، لذا دانش "خارج ازآنج"، مستقل از دانش آموز و آنچه که او بطور منفعل دریافت می کند، نیست. بلکه دانش از طریق یک پروسه فعال که درآن دانش آموز اطلاعات را انتقال می دهد، فرضیه می سازد ودرباره کاربرد مدلهای ذهنی خودش تصمیم می گیرد. یک شکل دیگر از ساختارگرایی بنام ساختارگرایی اجتماعی هم، بر نقش معلم، والدین، همسالان و دیگر اعضای جامعه درکمک به دانش آموزان برای مفاهیم اصلی که آنها با فکر خود بتنهایی قادر به درک آن نیستند تاکید می کند. برای ساختارگرایان اجتماعی، آموزش باید فعال، دارای مفهوم واجتماعی باشد. اینکار در یک گروه که یک معلم بعنوان تسهیل کننده یا راهنما دارد به بهترین وجه اجرا می شود.
2 – وعده های ICT درآموزش
برای کشورهای درحال توسعه ICT یک امکان بالقوه، برای افزایش دسترسی و پیشرفت ارتباط و کیفیت آموزش دارد. ICT بطور زیادی کسب دانش و جذب وفراگیری آنر، با ارایه بی سابقه فرصت به کشورهای درحال توسعه برای افزودن و گسترش سیستمهای آموزشی ,ارتقا فرمول بندی و اجرای سیاستها وگسترش دامنه فرصتها برای کار و فقرا تسهیل می بخشد. یکی از بزرگترین سختیها که فقرا تحمل می کنند همچنین افراد دیگری که در فقیرترین کشورها زندگی می کنند، حس انزوایی است. فناوری های ارتباطی تضمین کاهش چنین حسی هستند وهمچنین تسهیل دردسترسی به دانش از طریق راههایی که قبلا“ غیرقابل تصور بوده است. هرچند، واقعیت تقسیم دیجیتال (شکاف بین آنهایی که به کنترل فناوری دسترسی داشته و کسانی که دسترسی ندارند) به این معنی است که معرفی و یکپارچه سازی ICT در سطوح مختلف و درانواع متنوع آموزش، پرچالش ترین تعهدات است. شکست در این مبارزه به معنی بیشتر شدن شکاف دانش و عمیق شدن نابرابریهای موجود اقتصادی و اجتماعی است.
2-1 چگونهICT می تواند به توسعه دسترسی به آموزش کمک کنند؟
ICT یک ابزار بالقوه نیرومند برای توسعه فرصتهای آموزشی، چه رسمی و چه غیررسمی است برای حوزه های قبلا“ ذکرشده (جمعیتهای متفرق و روستایی) اقلیتهای قومی، زنان، دختران ، افراد ناتوان و پیران گروههای بطور سنتی محروم از آموزش بعلت دلایل فرهنگی یا اجتماعی هستند، همچنین همه افرادی که بدلایل مالی یا محدودیت زمانی قادر به ثبت نام در مراکز آموزشی نیستند.
هر زمان، هرجا (خصیصه تعریف کننده ICT ) توانایی ICT در سبقت از زمان و مکان است. ICT، آموزش غیر همزمان یا آموزش با مشخصه یک تاخیر زمانی بین ارایه آموزش و پذیرش آن توسط فراگیران را ممکن می سازد.
برای مثال، مواد درسی دوره ای online ممکن است در سراسر روز یا هفته در دسترس باشند.
ICT الزام همه فراگیرن ومربیان نسبت به بودن در یک مکان فیزیکی را رفع می کند. بعلاوه انواع معینی از ICT مانند تکنولوژی کنفرانس از راه دور این امکان را می دهد که آموزش در یک زمان، بوسیله فراگیران متعدد و از نظر مکانی پراکنده، مورد استفاده قرار گیرد.
دسترسی به منابع آموزش از راه دور . معلمان و شاگردان دیگر مجبور نیستند فقط به کتابهای چاپ شده و دیگر وسایل رسانه ای فیزیکی موجود درکتابخانه ها (که به مقدار محدود دردسترس هستند) برای نیازهای آموزشی خود متکی باشند. با اینترنت و شبکه جهانی وب، وسایل آموزشی زیادی تقریبا“ در همه موضوعات و با تنوع رسانه ها می تواند از هرجا و درهرمدت از روز و توسط تعداد نا محدودی از مردم قابل دسترس باشد.
این موضوع خصوصا“ در خیلی از مدارس کشورهای درحال توسعه چشمگیر است، همچنین حتی در بعضی از مدارس کشورهای توسعه یافته که منابع کتابخانه ای آنها محدود و منسوخ شده اند، اهمیت دارد.
ICT همچنین دسترسی به افراد و مراجع (مربیان، خبرگان، پژوهشگران، متخصصان، رهبران و اشراف) را درهمه جهان تسهیل می بخشد.
2-2 کاربرد ICT در آماده کردن افراد برای محیط های کاری
یکی از شایعترین دلایل ذکر شده برای بکارگیری ICT درکلاس، بهتر آماده کردن نسل فعلی دانش آموزان برای یک محیط کاری است،که درآن ICT خصوصا“، کامپیوتره، اینترنت و فناوری های مرتبط، روز به روز بیشتر رواج می یابند. لذا سواد تکنولوژیک یا توان بکارگیری موثر و بهینه ICT، بعنوان یک لبه رقابتی در یک بازار کار درحال جهانی شدن، بنظر می آید. التبه سواد تکنولوژیک فقط مهارت ارایه خوب کارها طبق خواست اقتصاد جدید جهانی نیست . آزمایشگاه آموزشی منطقه شمالی ایالات متحده آمریکا، آن چیزی که مهارتهای قرن 21 نامیده می شود را چنین شناسایی کرده است: سواد قرن دیجیتال ( خود شامل سواد عملکردی، سواد بصری، سواد علمی، سواد تکنولوژیک، سواد اطلاعاتی، سواد فرهنگی و هشیاری و آگاهی جهانی) تفکر اختراعی، تفکر در رسیدن به رتبه بالاتر، استدلال کامل، ارتباط موثر و بهره وری بالا . ( به جدول 1 برای توضیح بیشتر نگاه کنید)
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:126
فهرست مطالب:
فصل اول: مقدمه ای بر کاربردهای نانو تکنولوژی
مقدمه 7
تاریخچه 8
استفاده تایلند از نانو تکنولوژی برای بهبود کیفیت ابریشم 11
لباسهای بی نیاز از شستشو و پارچه های ضد چروک و لکه 12
نانو جوراب 13
نانو فیلتراسیون 14
لوله های انتقال گاز نانوژل 16
الکتروریسی 19
فصل دوم: تولید نانو الیاف با تکنولوژی الکتروریسی
الکترو ریسی الیاف نانو کولاژن 24
روشها 27
الکتروریسی مداوم نانو الیاف پلیمر خطی روی یک درام جمع کننده سیمی 35
بررسی اثر حلال روی الکتروریسی توسط شبیه سازی کامپیوتری 40
مورفولوژی الیاف الکتروریسیده شده 41
شبیه سازی جریان برشی 42
الکتروریسی ترپلیمر نایلون 6 ، 6 6 ، 1010 46
خصوصیات کششی: 48
دست آوردها و مباحث 48
ساخت مکانهای مشخص مولکولی در الکتروریسی پلیمر نانوالیاف از طریق جانشینی مولکولی 59
جانشینی مولکولی 61
نانو الیاف پلیمری الکتروریسیده استحکام بالای ساخته شده از BPDA-PDA 64
تهیه PI از پیش ماده BP-PAA 66
الکتروریسی و تهیه ورقه نانو لیف PI 66
نانوساختار الیاف بافته شده باو الکتروریسی فرکانس بالا 73
تهیه نانو الیاف ابر آبدوست با خصوصیات مغناطیسی قابل تغییر 82
جزئیات آزمایش 83
فصل سوم: کاربرد نانو الیاف در کامپوزیتها
تهیه نانوتیوب تک دیواره کربنی تقویت شده با نانوالیاف و غشاهای پلی استایرن و پلی یورتان با الکتروریسی 92
نانو الیاف کامپوزیت:مورفولوژی،خواص نوری و ترانزیستورهای اثر میدان 104
خصوصیات مکانیکی و فیزیکی کامپوزیتهای اپوکسی تقویت شده با نانو الیاف کربن 116
فرآورش ورقه های نانو کامپوزیت 117
خواص مکانیکی 119
نتیجه گیری کلی 125
منابع و ماخذ 126
چکیده کلی:
نانو تکنولوژی در حقیقت علم ذرات و مواد در مقیاس متر است.
فن آوری نانو بعنوان علم روز کاربردهای زیادی در صنعت نساجی داشته است که این مورد به بررسی و تولید مواد در مقیاس نانو پرداخته و امکان بهینه سازی خصوصیات مواد مورد استفاده که اغلب پلیمرها می باشند را به مهندسین می دهد. برای تولید مواد در این مقیاس دو روش کلی وجود دارد، یکی روش تولید از بالا به پایین و دیگری تولید از پایین به بالاست.بهترین،سریعترین و اقتصادی ترین روش تولید از بالا به پایین برای الیاف روش الکتروریسی است.این روش بر گرفته از روشهای سنتی و تولید الیاف (ذوب ریسی و محلول ریسی) می باشد.با این تفاوت که روشهای سنتی بر مبنای کشش می باشد.این روش برای اکثر پلیمرها مورد استفاده قرار می گیرد و روال کار به این صورت است که ابتدا محلول یا مذاب پلیمر تهیه شده و به داخل سرنگی مجهز به پمپ سرنگ با تزریق کاملاً یکنواخت منتقل می شود،جریان برقی با ولتاژ بالا بین سر سوزن سرنگ و صفحه جمع کننده که می تواند چرخان نیز باشد،برقرار ی شود که باعث ایجاد یک جت الکتریکی و در نتیجه انتقال محلول یا مذاب پلیمر باردار شده به روی جمع کننده می شودبعلت پیوستگی بار الکتریکی در اثر انتقال پلیمر به جمع کننده قطع شدگی صورت نمی گیرد.پارامترهای زیادی در کیفیت و یکنواختی الیاف تولید شده دخیل هستند،مانند ویسکوزیته محلول،سرعت دوران جمع کننده،سرعت تزریق،ولتاژ اعمال شده بین سر سوزن جمع کننده و ...
کامپوزیتها که بعنوان ساده ترین کامپوزیت می توان به کاه گل اشاره کرد، امروزه به منظور استفاده در صنایع بسیار حساس تولید و مورد استفاده قرار می گیرد. امروزه نانو کامپوزیتها در حال جایگزینی با فلزات سنگین هستند که با توجه به کارامد بودن آنها که در بیشتر موارد شامل خواص بهتر و وزن بسیار پایین تر می باشند می رود که جای خود را بعنوان ماده جایگزین در بدنه و موتور ماشینها، هواپیماها، موشکها و شاتلهای فضایی و موارد بسیار زیاد دیگر باز کند.
بعلت ابعاد کوچک الیاف در مقیاس نانو می توان از آنها برای تولید فیلترها استفاده کرد. که امروزه امکان تولید فیلترهای با کارایی بسیار بالا با این فن آوری فراهم شده است. در مورد کارایی بسیار بالا نانو فیلترها می توان به فیلترهایی اشاره کرد که عمل فیلتراسیون قارچها، باکتریها و حتی ویروسها را با راندمان مطلوب را انجام می دهند. نانو فیلترها علاوه بر کارایی بالا در زمینه ی فیلتر کردن مواد بسیار ریز، دارای سرعت بسیار بالاتری نسبت به فیلترهای معمولی بوده ضمن اینکه احیای آنها نیز بسیار راحت تر انجام می شود.
مقدمه:
ریچارد فاینمن طی یک سخنرانی در همایش جامعه فیزیک آمریکا در سال 1959 در مؤسسه تکنولوژی کالیفرنیا که بعد در آنجا استاد فیزیک شد، ایدههایی بنیادی در زمینه کوچکسازی نوشته جات ، مدارها و ماشینها ایراد کرد: "آنچه من میخواهم به شما بگویم، مسئله دستکاری و کنترل اشیاء در مقیاس کوچک است. تردیدی وجود ندارد که در نوک یک سوزن آنقدر جا هست که بتوان تمام دایرة المعارف بریتانیکا را جا داد." فاینمن برای به تفکر واداشتن محققین و تأکید نمودن بر عقیدهاش مبنی بر امکان فیزیکی چنین معجزهای ، جایزههایی 1000 دلاری برای اولین افرادی که به اهداف مشخص شدهای در کوچک سازی کتابها و موتورهای الکتریکی دست یابند تعیین کرد.
فاینمن تآکید کرد: "من در حال خلق ضد جاذبه نیستم که به فرض روزی اگر قوانین (فیزیک) آنچه ما میپنداریم، نبودند عملی شود. من صحبت از چیزی میکنم که اگر قوانین آنچه ما میپنداریم باشند، عملی خواهد بود. ما به آن دست پیدا نکردهایم چون خیلی ساده هنوز در صدد انجام آن نبودهایم." جمله معروف ریچارد فاینمن فیزیکدان برجسته در این زمینه که میفرماید: فضای زیادی در سطوح پایین وجود دارد، بیانگر این مدعاست. هر کشوری در پی آن است که فرصتها را کشف کند تا بتواند پیشرفت کند.
تاریخ کشورهایی که امروزه ما آنها را کشورهای پیشرفته و ثروتمند میدانیم هم حاکی از همین مسئله است، کشورهایی که به انقلاب صنعتی روی خوش نشان دادند، کشورهایی که با فناوری دیجیتال همگام شدند، کشورهایی که از همان ابتدا کامپیوتر و جهان پس از آن آنرا باور کردند و... .
این فرصتها هر چندین سال یک بار اتفاق میافتند و هر کشوری که گوش به زنگ باشد میتواند از آثار مثبت آنها برخوردار شود. اکنون نانو تکنولوژی هم یک فرصت است، فرصتی که اگر به آن بها داده شود میتواند یک جهش علمی و اقتصادی در پی داشته باشد بخصوص برای کشور ما. ما باید علوم و فناوریهای جدید را با آغوش باز بپزیریم و برای آن هزینه کنیم.
اما متأسفانه به نظر نمیرسد که در کشور ما توجه خاصی به این مسئله شده باشد، اما حقیقتا درصد بسیار کمی از این حرفها راهی بسوی عملی شدن پیدا می کنند. هر کشوری در پی آن است که فرصتها را کشف کند تا بتواند پیشرفت کند. در نیم قرن گذشته شاهد حضور حدود پنج فناوری عمده بودیم، که باعث پیشرفتهای عظیم اقتصادی در کشورهای سرمایه گذار و ایجاد فاصله شدید بین کشورهای جهان شد.
متأسفانه در کشور ما بدلیل فقدان جرأت علمی و عدم تصمیم گیری به موقع ، به این فرصتها پس از گذشت سالیان طلائی آن بها داده میشد که البته سودی هم برای ما به ارمغان نمیآورد، همچون فنآوری الکترونیک و کامپیوتر در دو سه دهه گذشته که امروزه علیرغم توانایی دانشگاهی و داشتن تجهیزات آن ، هیچگونه حضور تجاری در بازارهای چند صد میلیاردی آن نداریم. فناوری نانو جدیدترین این فرصتهاست، که کشور ما باید برای حضور یا عدم حضور در آن خیلی سریع تصمیم خود را اتخاذ کند.[1]
دیدکلی:
در دو دهه اخیر ، پیشرفتهای تکنولوﮋی وسایل و مواد با ابعاد بسیار کوچک بدست آمده است و بسوی تحولی فوقالعاده که تمدن بشر را تا پایان قرن دگرگون خواهد کرد ، ﭘیش میرود. برای احساس اندازههای فوق ریز ، قطر موی سر انسان را که یک دهم میلیمتر است در نظر بگیرید، یک نانومتر صد هزار برابر کوچکتراست.
تکنولوﮋی و مهندسی در قرن پیش با وسایل ، اندازه گیریها و تولیداتی سر و کار خواهد داشت که چنین ابعاد فوق ریزی دارند. درحال حاضر ﭘروسههای در ابعاد چند مولکول قابل طراحی و کنترل است.
تاریخچه
تکنولوﮋی در قرن گذشته در هر چه ریزتر کردن دانههای بزرگتر ﭘیشرفت چشمگیری داشته است.تکنولوﮋی نو درقرن حاضر مسیر عکس را طی میکند. یعنی مواد فوق ریز را باید ترکیب کرد تا دانههای بزرگتر و کارآمد بوجود آورد. درست همان روشی که در طبیعت برای تولید کردن حاکم است. مجموعههای طبیعی ، ترکیبی از دانههای فوق ریز قابل تشخیص با خواص مشابه و یا متفاوت با اندازههایی در حدود نانو است.
معجزه نانو تکنولوژی:
به احتمال زیاد قبل از پایان هزاره سوم انسان در بدن خود انواع لوازم مصنوعی و دیجیتالی را خواهند داشت. از بیماری ، پیری ، درد ستون فقرات ، کم حافظهای و ... رنج نخواهد برد. قابلیت فهم و تحلیل اطلاعات در مغز آنها در مقایسه با امروز بینهایت خواهد شد. در هزارههای آینده انسانهای طبیعی مانند امروز احتمالا برای مطالعات پژوهشی نگهداری شده و به نمونههای آزمایشگاهی و بطور حتم قابل احترام تبدیل خواهند شد و مردمان آینده از این همه درد و ناراحتی که اجداد آنها در هزارههای قبل کشیدهاند، متعجب و متأثر خواهند بود.[1]
فناوری نانو چیست؟
به طور کلی این فناوری عبارت از کاربرد ذرات در ابعاد نانو است. یک نانومتر، یک میلیاردم متر است. از دو مسیر به این ابعاد می توان دسترسی پیدا کرد. یک مسیر دسترسی از بالا به پایین و دیگری طراحی و ساخت از پایین به بالا است. در نوع اول، ساختارهای نانو با کمک ابزار و تجهیزات دقیق از خرد کردن ذرات بزرگ تر حاصل می شوند. در طراحی و ساخت از پایین به بالا که عموما آن را فناوری مولکولی نیز می نامند، تولید ساختارها، اتم به اتم و یا مولکول به مولکول تولید و صورت می گیرند. به عقیده مدیر اجرایی موسسه نانوتکنولوژی انگلستان، فناوری نانو ادامه و گسترش روند مینیاتوریزه کردن است و به این طریق تولید مواد، تجهیزات و سامانه هایی با ابعاد نانو انجام می شود. درحقیقت فناوری نانو به ما امکان ساخت طراحی موادی را می دهند که کاملا دارای خواص و اختصاصات جدید هستند.
به بیان دیگر این نوع فناوری چیزهایی را که در اختیار داریم با خصوصیات جدید در اختیار قرار می دهد و یا آنها را از مسیرهای نوینی می سازد. اما گویا صنایع داروسازی از مدت ها قبل به ساخت ذرات ریز مشغول بوده اند. به نظر پروفسور Buckton، طی سخنرانی که در کنفرانس علوم دارویی انگلستان (BPC) انجام داد ادعا نمود که فناوری نانو در داروسازی اصطلاح تازه به کار گرفته شده ای برای فناوری تولید ذرات در اندازه میکرونی (particles Micro) است که از سال ها قبل تهیه و ساخته می شده اند. پس چه چیزی در این بین جدید خواهد بود؟ به عقیده مدیر اجرایی موسسه فناوری نانو انگلیس، دستیابی و ساخت دستگاه های آنالیز پیشرفته و ابداع روش های آنالیز نوین سبب می شود تا ما بتوانیم رفتار مواد را به دقت مورد شناسایی قرار دهیم و از این رهگذر بتوانیم آنها را با ظرافت خاصی دستکاری کنیم.[2]
تازههای نانو تکنولوژی:
شرکت Mobil کاتالیستهای نانو ساختاری را برای دستگاههای شیمیایی تولید کرده است و شرکت Merck ، داروهای نانو ذرهای را عرضه کرده است.
شرکت تویوتا در ژاپن مواد پلیمری تقویت شده نانو ذرهای را برای خودروها ، سامسونگ الکترونیک در کره ، در حال کار بر روی سطح صفحات نمایش توسط نانو لولههای کربنی هستند.[3]،[4]،[5]
چشم انداز فناوری نانو تکنولوژی:
انتظار میرود که مقیاس نانو متر به یک مقیاس با کارایی بالا و ویژگیهای منحصر بفرد ، طوری ساخته خواهند شد که روش شیمی سنتی پاسخگوی این امر نمیتواند باشد.
نانو تکنولوژی ، مراقبتهای بهداشتی ، طول عمر ، کیفیت و تواناییهای جسمی بشر را افزایش خواهد داد.
تقریبا نیمی از محصولات دارویی در 10 تا 15 سال آینده متکی به نانو تکنولوژی خواهد بود که این امر ، خود 180 میلیارد دلار نقدینگی را به گردش در خواهد آورد.
کاتالیستهای نانو ساختاری ، در صنایع پتروشیمی دارای کاربردهای فراوانی هستند که پیشبینی شده است این دانش ، سالانه100 میلیارد دلار را طی 10 تا 15 سال آینده تحت تأثیر قرار دهد.[1]
استفاده تایلند از نانو تکنولوژی برای بهبود کیفیت ابریشم:
21 ژانویه 2004 فیزیکدانان تایلندی به منظور بهبود کیفیت ابریشم، در مسیر جدیدی از نانو تکنولوژی وارد شده اند.
تحقیقات اخیر جزئی از یک پروژه سه ساله است که تأکید زیادی بر روی استفاده از روش "پرتوهای ذره ای پلازما" دارد.
دکتر تیرافات ویلاتیونگ از دانشگاه چیانگ می در مقایسه روش فوق با روش بحث بر انگیز GM که در آن ژن های خرجی به درون گونه ها اضافه می شوند ابراز داشت:"این روش با روش اصلاح ژنتیکی اندامها متفاوت است."
با انجام مطالعات با نانو تکنولوژی در جهت بهبود کیفیت ابریشم تولیدات ابریشم سه کشور صادر کننده آن یعنی ایتالیا،هند و چین تحت الشعاع قرار خواهد گرفت.
یکی از مهندسان پلاسمای دانشگاه چیانگ می اظهار داشت، که وی قصد دارد با استفاده از روش پلاسما،سطح ابریشم را روکش می کنند.در نتیجه ابریشم به آسانی تر نمی شود و گرد و خاک کمتری جذب می نماید.
پلاسما یا گازی که اتمهای منفرد آن باردار شده می تواند سبب تغییراتی نانو متری و نا محسوس بر روی سطح ابریشم شود.خصوصیات جدید را می توان بوسیله لیز خوردن یک قطره آب بر روی سطح ابریشم مشاهده نمود.تحقیقات نانو تکنولوژی در دانشگاه چیانگ می بوسیله شورای ملی تحقیقات تایلند تأمین مالی می شود.این سازمان حدود 14 میلیون بَت برای شروع کار در سال 2004 اختصاص داده است.همچنین سال گذشته یک مرکز نانو تکنولوژی در وزارت علوم تایلند دایر شده است.
تیرافات گفت:"کشور ما حدود 5 تا 10 سال از ژاپن عقب تر است.[6]
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:147
فهرست مطالب:
معرفی تکنیک FMEA
1-1 معرفی تکنیک FMEA و اهداف آن
1-2 کاربرد FMEA
1-3 تأثیر FMEA بر نرخ خرابی محصول
1-4 مراحل تهیه FMEA
1-5 فواید اجرای FMEA
1-6 انواع FMEA
نتیجه گیری
کاربرد آنالیز حالات بالقوه خرابی
در طراحی سیستم (System-FMEA)
تعریف سیستم
2-1 تعریف System-FMEA
2-2 خروجی System-FMEA
2-3 فواید اجرای System-FMEA
2-4 گام به گام با تحلیل System-FMEA
2-4-1 مشخصات سیستم
2-4-2 مسئولیت سیستم
2-4-3 نام اعضای تیم
2-4-4 تأمین کنندگان و دیگر افراد درگیر
2-4-5 مدل یا محصول
2-4-6 تاریخ انتشار مشخصات سیستم
2-4-7 تهیه کننده
2-4-8 تاریخ اجرای FMEA
2-4-9 تاریخ بازنگری FMEA
2-4-10 نام اجزای سیستم یا زیر سیستم ها / تشریح عملکرد
2-4-11 حالات بالقوه خرابی
2-4-11 آثار بالقوه خرابی
2-4-13 شدت
2-4-14 علل بالقوه خرابی
2-4-15 وقوع
2-4-16 کنترل های جاری (متدها و روش های تشخیص)
2-4-17 رتبه تشخیص
2-4-18 محاسبه RPN
2-4-19 اقدامات پیشنهادی
2-4-20 مسئولیت و تاریخ اجرا
2-4-21 اقدامات انجام شده
2-3-22 تجدید نظر در RPN
کاربرد آنالیز حالات بالقوه خرابی در
طراحی قطعه / محصول (Design-FMEA)
پیشگفتار
3-1 مبنا و هدف از تهیه DFMEA
3-2 تعریف حالات بالقوه خرابی
3-3 تعریف DFMEA
3-4 کاربردهای DFMEA
کاربرد DFMEA در صنعت خودرو
3-5 فواید استفاده از DFMEA
3-6 تیم DFMEA
3-8 نقطه شروع کار
3-9 مراحل تهیه DFMEA
3-9-1 معرفی قطعات تشکیل دهنده محصول و عملکرد آن ها
3-9-2 حالات بالقوه خرابی
راهنمایی هایی برای تعیین حالات بالقوه خرابی
3-9-3 آثار بالقوه حالات خرابی
3-9-4 شدت (Severity)
3-9-5 کلاسه بندی
3-9-6 علل بالقوه خرابی
* راهنمایی هایی برای تشخیص علل خرابی
مثال
3-9-7 وقوع
راهنمایی هایی برای تعیین رتبه وقوع
3-9-8 کنترل های جاری در طراحی
3-9-9 تشخیص
* راهنمایی هایی برای انتخاب رتبه تشخیص
3-9-10 نمره ریسک پذیری خرابی (RPN)
3-9-11 اقدامات پیشنهادی
* برای کاهش رتبه شدت
* برای کاهش رتبه وقوع
* برای کاهش رتبه تشخیص
پیشنهاد
3-9-12 مسئولیت و زمان اجرا
3-9-13 نتایج اقدامات انجام شده
خلاصه
کاربرد آنالیز حالات بالقوه خرابی
در فرآیندهای تولید (Process-FMEA)
پیشگفتار
4-1 چرا از Process FMEA استفاده می کنیم؟
4-2 تعریف حالت خرابی در فرآیند
4-3 تعریف Process FMEA
4-4 کاربردهای PFMEA
کاربرد PFMEA در صنعت خودرو
4-5 فواید بالقوه اجرای PFMEA
4-6 نیازمندی های اجرای PFMEA
4-6-1 تیم PFMEA
4-6-2 نقطه شروع کار
4-7 مراحل تهیه PFMEA
4-7-1 معرفی فرآیند (عملکرد و نیازمندی های آن)
4-7-2 حالات بالقوه خرابی
4-7-3 آثار بالقوه خرابی
4-7-4 شدت
4-7-5 کلاسه بندی
4-7-6 علل بالقوه خرابی
4-7-7 رتبه وقوع
4-7-8 کنترل های جاری فرآیند
نکات قابل توجه
4-7-9 رتبه تشخیص (Detection)
4-7-10 محاسبه نمره ریسک پذیری خرابی (RPN)
4-7-11 اقدامات پیشنهادی / اصلاحی (Recommended Actions)
4-7-12 مسئول و زمان اقدام پیشنهادی
4-7-13 نتایج اقدامات پیشنهادی
خلاصه
راه حل های برای انتخاب رتبه تشخیص مناسب
کاربرد آنالیز حالات بالقوه خرابی در
طراحی ماشین آلات و ابزارهای تولید
(Machinery-FMEA)
پیشگفتار
5-1 تعریف MFMEA
5-2 فواید اجرای MFMEA
5-3 تشریح مفاهیم ستون های یک فرم MFMEA
5-3-1 نام زیر سیستم و تشریح عملکرد
5-3-2 حالات خرابی در ماشین
5-3-3 اثر خرابی در ماشین
5-3-4 شدت
5-3-5 علل بالقوه خرابی
5-3-6 وقوع حالت خرابی
5-3-7 کنترل های طراحی / کنترل های ماشین
5-3-8 تشخیص
5-3-9 نمره ریسک پذیری خرابی RPN
5-3-10 اقدامات اصلاحی پیشنهادی
کاربرد آنالیز حالات بالقوه خرابی
در ارائه خدمات (Service-FMEA)
پیشگفتار
6-1 تعریف Service FMEA
6-2 اهداف اجرای Service FMEA
6-3 تشریح ستون های یک فرم Service FMEA
6-3-1 شرح عملکرد (وظیفه) خدمت
6-3-2 حالات خرابی بالقوه
6-3-3 آثار بالقوه خرابی
6-3-4 مشخصه های بحرانی
6-3-5 شدت
6-3-6 علل بالقوه خرابی
6-3-7 وقوع
6-3-8 روش های کنترل (تشخیص)
6-3-9 رتبه تشخیص
6-3-10 نمره ریسک پذیری (RPN)
6-3-11 اقدامات پیشنهادی
6-3-12 تاریخ تکمیل و مسئول اجرا
6-3-13 ثبت نتایج اقدامات اجرا شده
6-3-14 تجدیدنظر در RPN
چکیده:
معرفی تکنیک FMEA
افزایش رقابت، افزایش توقعات و تقاضاهای مکرر مشتری و تغییرات سریع فناوری، باعث افزایش سریع تعهدات تولیدکنندگان امروزی شده است. هر کمبود و انحراف در عملکرد محصول، باعث از دست دادن سهم بازار می شود. این عوامل موجب شده که امروزه سازمانها به استفاده از این تکنیک روی آورند تا به کمک آن مطمئن شوند محصولی بی عیب و قابل رقابت روانه بازار می کنند.
اهم مطالبی که در این فصل به اختصار توضیح داده می شوند عبارتند از:
1.معرفی تکنیک FMEA و اهداف آن
1-1. معرفی تکنیک FMEA و اهداف آن
تعریف: FMEA متدلوژی یا روشی است سیستماتیک که به دلایل زیر به کار می رود:
الف – شناسایی و اولویتبندی حالات بالقوه خرابی در یک سیستم، محصول، فرآیند و یا سرویس.
ب – تعریف و اجرای اقداماتی به منظور حذف و یا کاهش میزان وقوع حالات بالقوه خرابی.
پ- ثبت نتایج تحلیل های انجام شده به منظور فراهم کردن مرجعی کامل برای حل مشکلات در آینده.
در دهه 1950 اهمیت مسائل ایمنی و پیشگیری از حوادث قابل پیشبینی در صنعت هوا – فضا، علت اصلی پیدایش FMEA شد. چندی بعد، این روش به عنوان ابزاری کلیدی برای افزایش ایمنی در فرآیندهای صنایع شیمیایی مطرح شد و از آن به بعد، هدف از اجرای FMEA پیشگیری از تصادفات و اتفاقات تعریف شده است. در فوریه 1992 استاندارد SAE-J-1739 به عنوان استاندارد مرجع FMEA در صنایع خودرو معرفی شد و به دنبال آن در سال های اخیر، توسعه سیستم های تضمین کیفیت در صنعت خودرو به خصوص وضع استاندارد QS-9000 در صنعت خودروی آمریکا، موجب شد که استفاده از FMEA رواج بیشتری یابد.
FMEA تکنیکی تحلیلی و متکی بر قانون «پیشگیری قبل از وقوع» است که برای شناسایی عوامل بالقوه خرابی به کار می رود. توجه به این تکنیک بر بالا بردن ضریب امنیت و در نهایت رضایت مشتری، از طریق پیشگیری از وقوع خرابی است. FMEA ابزاری است که با کمترین ریسک، برای پیش بینی مشکلات و نقص ها در مراحل طراحی و توسعه فرآیندها و خدمات در سازمان به کار می رود.
یکی از عوامل موفقیت FMEA زمان اجرای آن است. این تکنیک برای آن طرح ریزی شده که «یک اقدام قبل از واقعه باشد» نه «یک تمرین بعد از آشکار شدن مشکلات». به بیانی دیگر، یکی از تفاوت های اساسی FMEA با سایر تکنیک های کیفی این است که FMEA یک اقدام کنشی است، نه واکنشی. در بسیاری از موارد، وقتی با مشکی مواجه می شویم، ممکن است برای حذف آن، اقدامات اصلاحی تعریف و اجرا شود. این اقدامات، واکنشی است در برابر آنچه اتفاق افتاده است. در چنین مواردی حذف همیشگی مشکل، به هزینه و منابع زیاد نیاز دارد؛ زیرا حرکت از وضعیت موجود به سمت شرایط بهینه اینرسی زیادی خواهد داشت، اما در اجرای FMEA با پیش بینی مشکلات بالقوه و محاسبه میزان ریسک پذیری آن ها، اقداماتی در جهت حذف و یا کاهش میزان وقوع آن ها تعریف و اجرا می شود. این برخورد پیشگیرانه، کنشی است در برابر آنچه که ممکن است در آینده رخ دهد و مسلماً اعمال اقدامات اصلاحی در مراحل اولیه طراحی محصول یا فرآیند، هزینه و زمان بسیار کم تری در برخورد داشت. علاوه بر این، هر تغییری در این مرحله بر روی طراحی محصول یا فرآیند به راحتی انجام شده و در نتیجه احتمال نیاز به تغییرات بحرانی در آینده را حذف می کند یا کاهش خواهد داد.
FMEA اگر درست و به موقع اجرا شود، فرآیندی زنده و همیشگی است؛ یعنی هر زمان که قرار است تغییرات زیادی در طراحی محصول و یا فرآیند تولید (یا مونتاژ) انجام گیرد باید به روز شود و لذا همواره ابزاری پویاست که در چرخه بهبود مستمر به کار می رود.
هدف از اجرای FMEA جستجوی تمام مواردی است که باعث شکست یک محصول یا فرآیند می شود، قبل از این که آن محصول به مرحله تولید برسد و یا فرآیند آماده تولید شود. FMEA به تنهایی مسائل و مشکلات را برطرف نمی کند، بلکه باید در کنار سایر تکنیکهای حل مسأله مورد استفاده قرار گیرد. تهیه FMEA فرصتهایی را برای سازمان فراهم می کند که اگر فقط در قالب یک فرم مستند شوند، هرگز مشکلات را حل نمی کنند.
1-2. کاربرد FMEA
FMEA در هر یک از شرایط زیر اجرا می شود:
1-3. تأثیر FMEA بر نرخ خرابی محصول
استفاده از FMEA در مراحل مختلف، موجب کاهش نرخ خرابی محصول در زمان مصرف می شود.
الف – اجرای FMEA Design/(System) : فرآیند طراحی را با کاهش میزان ریسک خرابی، استحکام می بخشد. همچنین با تصحیح نقصها و اشکالات طراحی محصول (با سیستم)، میزان خرابی را در دوره «عمر مفید» کاهش داده، و شکست های محتمل در زمان فرسودگی را نیز به تعویض می اندازد. (شکل 1)
ب – اجرای Processes-FMEA : عوامل بالقوه خرابی فرآیند ساخت یا مونتاژ را که منجر به تولید محصول نامناسب می شود، شناسایی می کند و لذا فرآیند ساخت و تولید محصول را با کاهش ریسک خرابی، استحکام می بخشد. PFMEA با اصلاح نقص های فرآیند ساخت و یا مونتاژ، نرخ خرابی های محصول را در دوره «عمر آغازین» محصول کاهش می دهد. (شکل 1) .
1-4. مراحل تهیه FMEA
الف – تحت چه شرایطی محصول نمی تواند اهداف و مقاصد طراحی را برآورده سازد و یا نیازهای فرآیند تحقق نمی یابد؟
ب – حالات خرابی چه تأثیری بر مشتری و یا فعالیت های بعدی خواهند داشت؟
پ – اثر خرابی (بر اساس رتبه بندی 1 تا 10) چه شدتی دارد؟ (عدد شدت).
ت – علل بالقوه خرابی کدامند؟
ث – احتمال وقوع علل خرابی (بر اساس رتبه بندی 1 تا 10) چقدر است؟ (عدد وقوع).
ج – در حال حاضر چه کنترل هایی به منظور پیشگیری و یا تشخیص حالات خرابی و علل آن انجام می شود؟
چ – قدرت تشخیص کنترل های موجود (بر اساس رتبه بندی 1 تا 10) چه میزان است؟ (عدد تشخیص).
ح – میزان خطرپذیری حالات بالقوه خرابی به ازای علل مختلف چه مقدار است؟ (محاسبه RPN).
(تشخیص) (وقوع) (شدت) = (RPN) نمره اولویت ریسک
خ – به منظور کاهش میزان خطرپذیری چه اقداماتی می تواند صورت گیرد؟
FMEA به دلایل زیر به عنوان سوابق محصول و یا فرآیند مستند می شود:
1-5 . فواید اجرای FMEA
پاره ای از فواید اجرای FMEA عبارتند از:
1-6 . انواع FMEA
در حال حاضر بیشترین کاربرد FMEA شامل موارد زیر است:
نتیجه گیری
شما اگر کارتان را بر طبق روال قبل انجام دهید، چیزی را به دست خواهید آورد که قبلاً به دست آورده اید. اگر سازمانی از نتایج کار خود راضی است نیازی به اجرای FMEA ندارد، اما اگر مشکلاتی در پیش رو دارد، اجرای FMEA در کنار سایر تکنیک های حل مسأله چارهساز خواهد بود.