یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

مقاله معادلات دیفرانسیل -روش‌های تفاضل متناهی

اختصاصی از یارا فایل مقاله معادلات دیفرانسیل -روش‌های تفاضل متناهی دانلود با لینک مستقیم و پرسرعت .

مقاله معادلات دیفرانسیل -روش‌های تفاضل متناهی


مقاله معادلات دیفرانسیل -روش‌های تفاضل متناهی

 

 

 

 

 

 


فرمت فایل : word(قابل ویرایش)

تعداد صفحات:42

فهرست مطالب:

«روش‌های تفاضل متناهی»
[معادلات دیفرانسیل خطی مرتبه دوم]   ‍[صفحه 5, 4 ]
اشتباه بریدگی داخلی. (p.565) (خطای برش)
شرایط مرزی اشتقاقی: (p.596)
دیفرانسیل:
روش مرتبه چهارم در غیاب   در ( .46) . (p.598)
شرایط مرزی اشتقاقی برای ( .56)  . (p.598)
معادلات دیفرانسیل مرتبه دوم غیرخطی   
روش تکراری (Itratio Method)
روش نیوتن – رافسون.
(Newton – Raphson Method)
مثال 3 : مسأله مقدار مرزی زیر را وقتی   حل کنید.
روش های عناصر متناهی:
(FINITE ELEMENT METHODS)
روش حل مسأله متغیر (Solution of the variation problem)
روش Ritz    (Ritz Method)
عناصر متناهی (Finite Elements)
چند جمله ای خطی لاگرانژ
روش عنصر متناهی (Ritz Finite Element method) Ritz
راه حل عنصر متناهی برای مسائل مقدار مرزی خطی

 

 

 

FINITE DIFFERENCE METHODS

«روش‌های تفاضل متناهی»

روابط واضح یا غیرواضح بین مشتقات و مقادیر توابع در نقاط آغازی وجود دارد.

نقاط آغازی بر روی [a,b] می تواند به وسیله [j= 1,2,…,N] و xj= a+jh به طوریکه ، ، در نظر گرفته شود.

این عبارت برای مشتقات تحت شرایط مقادیر تابعی است.

جواب مسأله مقدار مرزی یک تفاضل متناهی بوسیله جای‌گذاری معادله دیفرانسیل در هر نقطه آغازین به وسیله یک معادله تفاضلی بدست می آید.

با در نظر گرفتن شرایط مرزی در معادلات تفاضلی، سیستم جبری معادلات مورد حصول حل می شود، این یک جواب عددی تخمینی برای مسأله مقدار مرزی بدست می دهد.

- Linear Second Order Differential Equations

 

[معادلات دیفرانسیل خطی مرتبه دوم]   ‍[صفحه 5, 4 ]

به معادله دیفرانسیل مرتبه دوم زیر توجه می کنیم:  

،      (46)

در رابطه با شرایط مرزی نوع اول: ،    (47)

مقدار قطعی u(m) از با مشخص شده و مقدار تقریبی آن با ، با استفاده از سریهای تیلورها می توانیم مشخص کنیم که:

         ( .42)

 

به طوری که و

       (49)

 

به طوری که

ما فرض کردیم که پیوستگی بدین صورت است:

 

به طوری که .

با در نظر گرفتن شرایط در 48 ، 49 و جایگذاری در 46 ، تفاضل تقریبی متناهی معادله دیفرانسیل مذکور در به صورت زیر است:

 ( .50)

شرایط مرزی ( .42) به صورت زیر تبدیل می شود:

                 ( .51)

پس از ضرب با  ، ( .50) می تواند به صورت زیر نوشته شود:

و    ( .52)

به طوری که:

و و

سیستم ( .52) در نوشتار ماتریسی، پس از لحاظ شرایط مرزی، تبدیل می‌شود به:

( .53)           Au=b

به طوری که:      

 

 

حل سیستم معادلات خطی ( .53) جواب تفاضل متناهی معادله دیفرانسیل  ( .46) را ارائه می دهد که پاسخگوی شرایط مرزی مدنظر است.

 

اشتباه بریدگی داخلی. (p.565) (خطای برش)

غلط بریدگی داخلی از معادله ( .52) بوسیله

   ( .54)

نشان داده می شود. به طوری که

بسط هر شرط در طرف اول معادله ( .54) در سری تیلور آن مول ، بدست می دهد:

( .55)

به طوری که .

بنابراین روش مذکور، روش حل معادله مرتبه دوم می باشد.

 

شرایط مرزی اشتقاقی: (p.596)

هم اکنون توجه خود را به شرایط مرزی نوع سوم معطوف می کنیم:

 

       ( .56)

تفاضل تقریبی معادله دیفرانسیل ( .46) در گره‌های داخلی j=1,2,…,N ، بوسیله معادله ( .52) داده شده که دارای N+2 مجموع در N معادله می‌باشد. هم اکنون ما نیاز داریم دو یا چند معادله متناظر برای شرایط مرزی ( .56) بیابیم.

با حذف شرایط در ( .48) ، تفاضل تقریبی متناهی ( .56) به صورت زیر می باشد:

در  :                      یا

                 ( .57)

در       یا

           ( .58)

به طوری که و ، مقادیر تابعی در و می باشند. گره‌های و خارج از بازه [a,b] قرار دارند و گره‌های غیرواقعی خوانده می‌شوند:


دانلود با لینک مستقیم