فرمت فایل : word(قابل ویرایش)تعداد صفحات:61
فهرست مطالب
کاربرد تبدیل لاپالس در تحلیل مدار
-1- مقدمه
16-2- عناصر مدار در حوزة s
-3- تحلیل مدار در حوزة s
-4 چند مثال تشریحی
-5 تابع ضربه در تحلیل مدار
16-6 خلاصه
17-5- تابع تبدیل و انتگرال کانولوشن
مراجع
کاربرد تبدیل لاپالس در تحلیل مدار
16-1- مقدمه
تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است. نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد. دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند. بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند. اما در روشهای کلاسیک حل معادلات دیفرانسیل شرایط اولیه زمانی وارد می شوند که می خواهیم ضرایب مجهول را محاسبه کنیم.
هدف ما در این فصل ایجاد روشی منظم برای یافتن رفتار گذرای مدارها به کمک تبدیل لاپلاس است. روش پنج مرحله ای بر شمرده شده در بخش 15-7 اساس این بحث است. اولین گام در استفاده موثر از روش تبدیل لاپلاس از بین بردن ضرورت نوشتن معادلات انتگرالی –دیفرانسیلی توصیف کنندة مدار است. برای این منظور باید مدار هم از مدار را در حوزةs به دست آوریم. این امر به ما امکان می دهد که مداری بسازیم که مستقیماً در حوزة تحلیل شود بعد از فرمولبندی مدار در حوزة sمی توان از روشهای تحلیلی بدست آمده (نظیر روشهای ولتاژ گره، جریان خانه و ساده سازی مدار) استفاده کرد و معادلات جبری توصیف کنندة مدار را نوشت. از حل این معادلات جبری، جریانها و ولتاژهای مجهول به صورت توابعی گویا به دست می آیند که تبدیل عکس آنها را به کمک تجزیه به کسرهای ساده به دست می اوریم. سرانجام روابط حوزه زمانی را می آزماییم تا مطمئن شویم که جوابهای به دست امده با شرایط اولیة مفروض و مقادیر نهایی معلوم سازگارند.
در بخش 16-2- هم از عناصر را در حوزة s به دست می آوریم. در شروع تحلیل مدارهای حوزة s باید دانست که بعد ولتاژ تبدیل شده ولت ثانیه و بعد جریان تبدیل شده آمپر ثانیه است. بعد نسبت ولتاژ به جریان در حوزة s ولت بر آمپر است و بنابراین در حوزة s یکای پاگیرایی ( امپدانس) اهم و یکای گذارایی ( ادمیتانس) زیمنس یا مو است.
فرمت فایل : WORD (قابل ویرایش)
تعداد صفحات:61
فهرست مطالب:
عنوان صفحه
کاربرد تبدیل لاپالس در تحلیل مدار 1
16-1- مقدمه 1
16-2- عناصر مدار در حوزة s 2
16-3- تحلیل مدار در حوزة s 9
16-4 چند مثال تشریحی 10
16-5 تابع ضربه در تحلیل مدار 28
16-6 خلاصه 46
17-5- تابع تبدیل و انتگرال کانولوشن 48
مراجع 61
کاربرد تبدیل لاپالس در تحلیل مدار
16-1- مقدمه
تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است. نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد. دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند. بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند. اما در روشهای کلاسیک حل معادلات دیفرانسیل شرایط اولیه زمانی وارد می شوند که می خواهیم ضرایب مجهول را محاسبه کنیم.
هدف ما در این فصل ایجاد روشی منظم برای یافتن رفتار گذرای مدارها به کمک تبدیل لاپلاس است. روش پنج مرحله ای بر شمرده شده در بخش 15-7 اساس این بحث است. اولین گام در استفاده موثر از روش تبدیل لاپلاس از بین بردن ضرورت نوشتن معادلات انتگرالی –دیفرانسیلی توصیف کنندة مدار است. برای این منظور باید مدار هم از مدار را در حوزةs به دست آوریم. این امر به ما امکان می دهد که مداری بسازیم که مستقیماً در حوزة تحلیل شود بعد از فرمولبندی مدار در حوزة sمی توان از روشهای تحلیلی بدست آمده (نظیر روشهای ولتاژ گره، جریان خانه و ساده سازی مدار) استفاده کرد و معادلات جبری توصیف کنندة مدار را نوشت. از حل این معادلات جبری، جریانها و ولتاژهای مجهول به صورت توابعی گویا به دست می آیند که تبدیل عکس آنها را به کمک تجزیه به کسرهای ساده به دست می اوریم. سرانجام روابط حوزه زمانی را می آزماییم تا مطمئن شویم که جوابهای به دست امده با شرایط اولیة مفروض و مقادیر نهایی معلوم سازگارند.
در بخش 16-2- هم از عناصر را در حوزة s به دست می آوریم. در شروع تحلیل مدارهای حوزة s باید دانست که بعد ولتاژ تبدیل شده ولت ثانیه و بعد جریان تبدیل شده آمپر ثانیه است. بعد نسبت ولتاژ به جریان در حوزة s ولت بر آمپر است و بنابراین در حوزة s یکای پاگیرایی ( امپدانس) اهم و یکای گذارایی ( ادمیتانس) زیمنس یا مو است.
تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است. نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد. دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند. بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند. اما در روشهای کلاسیک حل معادلات دیفرانسیل شرایط اولیه زمانی وارد می شوند که می خواهیم ضرایب مجهول را محاسبه کنیم.
هدف ما در این فصل ایجاد روشی منظم برای یافتن رفتار گذرای مدارها به کمک تبدیل لاپلاس است. روش پنج مرحله ای بر شمرده شده در بخش 15-7 اساس این بحث است. اولین گام در استفاده موثر از روش تبدیل لاپلاس از بین بردن ضرورت نوشتن معادلات انتگرالی –دیفرانسیلی توصیف کنندة مدار است. برای این منظور باید مدار هم از مدار را در حوزةs به دست آوریم. این امر به ما امکان می دهد که مداری بسازیم که مستقیماً در حوزة تحلیل شود بعد از فرمولبندی مدار در حوزة sمی توان از روشهای تحلیلی بدست آمده (نظیر روشهای ولتاژ گره، جریان خانه و ساده سازی مدار) استفاده کرد و معادلات جبری توصیف کنندة مدار را نوشت. از حل این معادلات جبری، جریانها و ولتاژهای مجهول به صورت توابعی گویا به دست می آیند که تبدیل عکس آنها را به کمک تجزیه به کسرهای ساده به دست می اوریم. سرانجام روابط حوزه زمانی را می آزماییم تا مطمئن شویم که جوابهای به دست امده با شرایط اولیة مفروض و مقادیر نهایی معلوم سازگارند.
در بخش 16-2- هم از عناصر را در حوزة s به دست می آوریم. در شروع تحلیل مدارهای حوزة s باید دانست که بعد ولتاژ تبدیل شده ولت ثانیه و بعد جریان تبدیل شده آمپر ثانیه است. بعد نسبت ولتاژ به جریان در حوزة s ولت بر آمپر است و بنابراین در حوزة s یکای پاگیرایی ( امپدانس) اهم و یکای گذارایی ( ادمیتانس) زیمنس یا مو است.
16-2- عناصر مدار در حوزة s
روش به دست آوردن مدار هم از عناصر مدار در حوزة s ساده است. نخست رابطة ولتاژ و جریان عنصر در پایانه هایش را در حوزه زمان می نویسم. سپس از این معادله تبدیل لاپلاس می گیریم به این طریق رابطة جبری میان ولتاژ و جریان در حوزة s به دست می آید. سرانجام مدلی می سازیم که رابطة میان جریان و ولتاژ در حوزة s را برآورد سازد. در تمام این مراحل قرارداد علامت منفی را به کار می بریم.
نخست از مقاومت شروع میکنیم، بنا به قانون اهم داریم
کاربرد تبدیل لاپالس در تحلیل مدار 1
16-1- مقدمه 1
16-2- عناصر مدار در حوزة s 2
16-3- تحلیل مدار در حوزة s 9
16-4 چند مثال تشریحی 10
16-5 تابع ضربه در تحلیل مدار 28
16-6 خلاصه 46
17-5- تابع تبدیل و انتگرال کانولوشن 48
مراجع 64
شامل 64 صفحه فایل word
چکیده
در این مقاله فرمولی برای محاسبه تقریبی تبدیل معکوس لاپلاس دو بعدی بر بازه متناهی ارایه شده است. اساس آن بر این است که با جای گذاری تبدیل لاپلاس دو بعدی تبدیل به کانولوشن تبدیل ملین دو بعدی می گردد که هسته آن شامل تابع می باشد که با جایگذاری حاصل ضرب متناهی از و استفاده از خواص معکوس تبدیل ملین دو بعدی تابع به صورت تقریبی بازسازی می شود که با افزایش جواب دقیق تری حاصل می شود.
کلمات کلیدی: تبدیل لاپلاس دو بعدی، تبدیل ملین دو بعدی، مسایل معکوس.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:66
فهرست مطالب:
عنوان صفحه
کاربرد تبدیل لاپالس در تحلیل مدار 1
16-1- مقدمه 1
16-2- عناصر مدار در حوزة s 2
16-3- تحلیل مدار در حوزة s 9
16-4 چند مثال تشریحی 10
16-5 تابع ضربه در تحلیل مدار 28
16-6 خلاصه 46
17-5- تابع تبدیل و انتگرال کانولوشن 48
مراجع 64
کاربرد تبدیل لاپالس در تحلیل مدار
16-1- مقدمه
تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است. نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد. دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند. بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند. اما در روشهای کلاسیک حل معادلات دیفرانسیل شرایط اولیه زمانی وارد می شوند که می خواهیم ضرایب مجهول را محاسبه کنیم.
هدف ما در این فصل ایجاد روشی منظم برای یافتن رفتار گذرای مدارها به کمک تبدیل لاپلاس است. روش پنج مرحله ای بر شمرده شده در بخش 15-7 اساس این بحث است. اولین گام در استفاده موثر از روش تبدیل لاپلاس از بین بردن ضرورت نوشتن معادلات انتگرالی –دیفرانسیلی توصیف کنندة مدار است. برای این منظور باید مدار هم از مدار را در حوزةs به دست آوریم. این امر به ما امکان می دهد که مداری بسازیم که مستقیماً در حوزة تحلیل شود بعد از فرمولبندی مدار در حوزة sمی توان از روشهای تحلیلی بدست آمده (نظیر روشهای ولتاژ گره، جریان خانه و ساده سازی مدار) استفاده کرد و معادلات جبری توصیف کنندة مدار را نوشت. از حل این معادلات جبری، جریانها و ولتاژهای مجهول به صورت توابعی گویا به دست می آیند که تبدیل عکس آنها را به کمک تجزیه به کسرهای ساده به دست می اوریم. سرانجام روابط حوزه زمانی را می آزماییم تا مطمئن شویم که جوابهای به دست امده با شرایط اولیة مفروض و مقادیر نهایی معلوم سازگارند.
در بخش 16-2- هم از عناصر را در حوزة s به دست می آوریم. در شروع تحلیل مدارهای حوزة s باید دانست که بعد ولتاژ تبدیل شده ولت ثانیه و بعد جریان تبدیل شده آمپر ثانیه است. بعد نسبت ولتاژ به جریان در حوزة s ولت بر آمپر است و بنابراین در حوزة s یکای پاگیرایی ( امپدانس) اهم و یکای گذارایی ( ادمیتانس) زیمنس یا مو است.
16-2- عناصر مدار در حوزة s
روش به دست آوردن مدار هم از عناصر مدار در حوزة s ساده است. نخست رابطة ولتاژ و جریان عنصر در پایانه هایش را در حوزه زمان می نویسم. سپس از این معادله تبدیل لاپلاس می گیریم به این طریق رابطة جبری میان ولتاژ و جریان در حوزة s به دست می آید. سرانجام مدلی می سازیم که رابطة میان جریان و ولتاژ در حوزة s را برآورد سازد. در تمام این مراحل قرارداد علامت منفی را به کار می بریم.
نخست از مقاومت شروع میکنیم، بنا به قانون اهم داریم
(16-1)
از آنجا که R ثابت است، تبدیل لاپلاس معادلة (16-1) چنین است .
(16-2) V=RI
که در آن
بنا به معادلة (16-2) مدار هم ارز یک مقاومت در حوزة s مقاومتی برابر R اهم است که جریان آن Iآمپر – ثانیه و ولتاژ آن V ولت –ثانیه است.
مدارهای مقاومت در حوزة زمان و حوزه بسامد در شکل 16-1 دیده می شود به یاد داشته باشید که در تبدیل مقاومت از حوزة زمان به حوزة بسامد تغییری در آن ایجاد نمی شود.
القاگری با جریان اولیة Io در شکل 16-2 آمده است. معادلة ولتاژ و جریان آن در حوزة زمان چنین است.
شکل 16-1- مقاومت در الف) حوزة زمان ،ب) حوزة بسامد.
شکل 16-2- القا گر L هانری با جریان اولیه Io آمپر.
در حوزة زمان چنین است
(16-3)
پس از تبدیل لاپلاس گرفتن از معادلة (16-3) داریم
(16-4)
به کمک دو مدار مختلف می توان معادلة (16-4) را تحقق بخشید. مدار هم از اول مداری است متشکل از یک امپدانس sL اهمی که با یک منبع ولتاژ مستقل LIo ولت ثانیه ای متوالی است. این مدار در شکل 16-3 دیده می شود در بررسی مدار هم ارز حوزة بسامدی شکل 16-3 توجه کنید که جهت ولتاژ منبع LIo بر مبنای علامت منفی مجود در معادله (16-4) است توجه به این نکته نیز اهمیت دارد که Io علامت جبری مخصوص به خود را دارد. یعنی چنانچه مقدار اولیة I خلاف جهت مبنای I باشد آنگاه Io مقدار منفی دارد.