یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

مسیر کامل کلید ولوم و دوربین گوشی blakberry 9380 به صورت تصویری

اختصاصی از یارا فایل مسیر کامل کلید ولوم و دوربین گوشی blakberry 9380 به صورت تصویری دانلود با لینک مستقیم و پرسرعت .

مسیر کامل کلید ولوم و دوربین گوشی blakberry 9380 به صورت تصویری


موضوع :

 مسیر کامل کلید ولوم و دوربین گوشی blakberry 9380  به صورت تصویری 


دانلود با لینک مستقیم

کارآموزی فیلم برداری با دوربین های ویدیو

اختصاصی از یارا فایل کارآموزی فیلم برداری با دوربین های ویدیو دانلود با لینک مستقیم و پرسرعت .

کارآموزی فیلم برداری با دوربین های ویدیو


کارآموزی فیلم برداری با دوربین های ویدیو

 

 

 

 

 



فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:15

فهرست مطالب:

اصول تئوری عکاسی
لنز: اصلی مهم برای تصاویر خوب
چیپس تصویر
ضبط دیجیتالی تصویر
تجهیزات
کارت گرافیک
کارت صدا
کارت ویدیو
هارد دیسک
ضبط نوار ویدیویی
نرم افزار فشرده سازی
کپی کردن تولید
صدا
تصاویر ثابت
نور و صوت
کد زمانی و سرعت نوار
فرمت های مختلف دیجیتالی
قدرت زوم
تثبیت تصویر
مونیتور و و چشمی
مبدل DV
فیلتر
تله کنورتور

 

 

اصول تئوری عکاسی
در همۀ دوربین ها یک لنز یا عدسی وجود دارد که وظیفه آن جمع کردن نور بر روی سطح یا صفحه ای حساس به نور است. در دوربین هایی که از فیلم استفاده می شود «دوربین های فیلمبرداری سینمایی»، تصاویر بر روی فیلمی پلاستیکی که از طریق مواد شیمیایی به نور حساس شده است، ضبط می شوند. بعد از فیلمبرداری باید فیلم را ظاهر و کپی کرد، که در این مرحله می توان، ان را به وسیله پروژکتور بر روی دیوار مشاهده کرد.
در یک دوربین ویدیو، یک چیپس الکترونیکی یا آی سی کوچک، نور را تبدیل به علامات یا سیگنال های الکترونیکی می‌کند که مانند سیگنال های کامپیوتر مورد استفاده قرار می گیرند. این نور در هر ثانیه به وسیله 25 تصویر تبدیل به علامات الکترونیکی می شود و هر تصویر اصطلاحاً دو بار «جارو» می شود. تصویر از منتهی الیه سمت چپ بالا تا منتهی الیه سمت راست پایین، ایجاد می شود. نتیجه اینکه 720 نقطه در 576 نقطه (576×720) بر روی صفحه، تصویر را می سازند.
لنز: اصلی مهم برای تصاویر خوب
وظیفه لنز، جمع آوری نور از روی سوژه یا موضوع فیلمبرداری و فوکوس کردن آن بر روی سطح حساس به نور دوربین است. هیچ تصویری نمی تواند شفاف تر و دارای وضوحی بیشتر از آن چه لنز تولید می‌کند باشد. از این رو یک لنز خوب به معنی شرط لازم برای یک تصویر خوب است.
لنز از یک یا چند ذره بین تشکیل شده است. تعداد عدسی ها رابطه مستقیمی با بهتر شدن تصویر ندارند، اما یک لنز با تعداد ذره بین کمتر می تواند از یک لنز یا ذره بین های بیشتر، بدتر باشد. لنز با دو عامل نشان داده می شود: فاصله کانونی و حداکثر قدرت باز شدن دیافراگم. این اصطلاحات از زمان کودکی هنر عکاسی یعنی از صد و اندی سال پیش در محدودۀ تصویربرداری مطرح بوده اند. اجازه دهید کمی بیشتر آنها را شرح دهم:
لنز واید در عمس بالا می تواند دوست ما را همراه با محیط پیرامون ان نشان دهد. عکس پائین با لنز تله بیشتر سوژه اصلی را نشان می دهد و آنرا از محیط خود جدا کرده است.
•    فاصله کانونی لنز، قدرت لنز را در نمایش کم یا زیاد در تصویر مشخص می‌کند. فاصله کانونی به میلی متر بیان می شود. هر گاه مقدار آن کم باشد، به معنی لنز واید است، یعنی مقدار زیادی از سوژه را نشان می دهد. اندازه بیشتر به معنی تله بودن لنز است و به معنی آن است که لنز، سوژه را نزدیک تر نشان می دهد.
•    حداکثر قدرت باز بودن دیافراگم، قدرت لنز را در انتقال نور به درون دوربین نشان می دهد. اگر لنز بتواند مقدار زیادی نور وارد دوربین بکند، شاید احتیای به استفاده از فلاش نباشد. قدرت باز بودن دیافراگم در درجه های مختلف نشان داده می شود. هر گاه اندازه آن بیشتر باشد، یعنی نور کمتری به داخل دوربین راه پیدا می‌کند.


دانلود با لینک مستقیم

دانلود تحقیق آشنایی با سیستم دوربین ها

اختصاصی از یارا فایل دانلود تحقیق آشنایی با سیستم دوربین ها دانلود با لینک مستقیم و پرسرعت .

دانلود تحقیق آشنایی با سیستم دوربین ها


دانلود تحقیق آشنایی با سیستم دوربین ها

 

 

 

 

 

 

 


فرمت فایل : word(قابل ویرایش)

تعداد صفحات:23

چکیده:

آشنایی با سیستم دوربین ها
عکاسی به معنای عام آن برسه محور دوربین ، مواد حساس به نور (فیلم) و نوار استوار است که بدون هر یک از این عوامل عکاسی غیر ممکن خواهد بود .
دوربین : دوربینهای عکاسی امروزه تنوع بسیار چشمگیری از لحاظ سیستم و شکل ظاهری دارند ، اما پایه و اساس تمامی آنها اتاقک تا ریک است . اتاقک تا ریک از زمانهای بسیار دور شناخته شده بود . در قرن یازدهم حسن بن هیثم دانشمند عرب اتاقک تاریک را برای رصد ستاره ها و مطالعه در خسوف و کسوف مورد استفاده قرار می داد .
بعد ها این وسیله طی جنگهای صلیبی به اروپا راه یافت و توسط لئوناردو داوینچی نابغة‌ قرن شانزدهم کمراابسکیور Camera Obscura نام گرفت .
اتاقک تاریک عبارت بود از اتاقکی که فقط بر روی یکی از سطوح آن روزنة ریزی تعبیه شده بود ، نو ر از روزنه عبو رکرده وتصویر نسبتا‏ٌ واضح و وارونه ای بر روی سطح مقابل روزنه تشکیل می داد . در واقع تصویر اتاقک تا ریک از نقاط بسیار ریز نوری تشکیل می شود .( نه خطوط و یا سطوح نوری) ، به همین دلیل در محاسبه و تعبیه قطر رو زنه دقت فراوانی می شود .
اگر قطر روزنه ریز تر از حد معمول باشد ، شعاعهای نوری در محل روزنه افتراق پیدا می کنند و با بزرگتر شدن روزنه ، نقاط نوری تداخل کرده و در نهایت وضوح تصویر از بین می رود . پس از اندک زمانی اتقک تاریک مورد استفاده عنقشان قرار گرفت ، بدین معنی که آنها صفحاتی را روی سطح مقابل روزنه می چسباندند و تصویری را که بر روی آن شکل می گرفت ، طراحی می کردند . تصویر بدست آمده به این روش ، از پرسپکتیو بسیار صحیحی بر خوردار بود ، اما برای این کار ، چون تصویر بسیار تاریک بود و نور کمی به داخل اتا قک می تابید لازم بود نقاشان مدت زیادی را در این اتاقک باقی بمانند تا چشمشان به تاریکی عادت کند و قادر به ددن تصویر شود .
بعدها در سال۱۵۵۰ ایتالیاییها روزنة اتاقک تاریک را به یک عدسی محدب مجهز کردند، با این کار روشنایی و وضوح تصویر بسیار بهبود یافت و زمینه برای تغییر تحولهای مهم

این وسیله فراهم شد . در قرن هفدهم که به علت کم حجم شدن اتاقک تاریک قابل حمل شده بود ، آینة ۴۵درجه ای به آن افزوده شد . آینه نور منعکس شده از موضوع را بر روی صفحه ای واقع در داخل اتاقک انتقال می داد و طراحان از تصویر بدست آمده استفاده می کردند . بعدها نوع کوچکتری از این اتاقکها به صورت تا شو ساخته شد که آن را بر روی میز یا محل تختی می گذاشتند وعدسی آن را رو به موضوع قرار می داد ند. نور با عبور از عدسی و شکسته شدن توسط آینه به صفحة شیشه ای مالتی واقع در سطح بالای جعبه می رسید و تصویر بر روی این صفحه تشکیل می شد . این وسیله به سرعت در مناطق عمومی و پارکها به کار گرفته شد و تاچندی پیش نیز برخی از عکاسان دوره گرد از آنها استفاده می کردند .
این پدیده افراد زیادی را به فکر ثبت تصویر تشکیل شده در آن انداخت و فعالیت های مختلفی شروع شد . سرانجام در سال ۱۸۲۲ ژوزف نیسفورنیپس افسر بازنشسته فرانسوی موفق که به ساخت داروی ثبوت شده بود ، اولین تصویر ثابت دنیا را بر روی کاغذ ثبت کرد . این اختراع به سرعت توسط افراد دیگر تکمیل شد ، اما به دلیل آنکه در آن ایام دستگاه آگراندیسوری وجود نداشت ، برای ثبت هر موضوعی اتاقکی مناسب با ابعاد آن می ساختند ، مثلا‏ُ برای عکاسی از یک واگن قطار از دوربین بسیار بزرگ موسوم به ”ماموتکمرا” سود می جستند .
با گذشت سالیان متمادی ، اتقک تاریک تحولات بسیا ری یافت و به وسایل متعددی مجهز شده است تا سرانجام به شکل دوربین های امروزی درآمد . هر چند دوربین های عکا سی با طیف بسیار گسترده ای در مدل ، شکل ، اندازه و مارکهای مختلف عرضه می شوند ، اما در بسیار مشخصات اصولی مشترکندکه این وجه اشتراک امکان طبقه بندی آنها را از چند لحاظ فراهم می آورد .
عده ای دوربین ها را از لحاظ نوع و قطع فیلم مصرفی طبقه بندی کرده اند که به ترتیب عبارتند از :

۱ـ دوربین های قطع بزرگ ـ۲ـ دوربین های قطع متوسط ـ۳ـ دوربین های قطع کوچک ـ۴ـ دوربین های مینوکسی یا کاراگاهی ـ۵ـ دوربین های خاص
۱ـ دوربین های قطع بزرگ : از این دوربین ها به دلیل دارا بودن حجم و وزن زیاد در آتیله بر روی سه پایه استفاده می شود و با فیلم های قطع بزرگ ( فلیم تخت ) تک صفحه ای کار می کنند . قطع فیلم های تخت در ابعاد ۱۲*۹ سانتی متر تا اندازه های حتی ۴۰*۳۰ سانتی متری ساخته می شوند . هر یک از فیلم های تخت در محفظه ای به نام شا سی قرار می گیرند و پس از تنظیم دوربین در محل شیشه تار گذاشته می شوند در واقع دوربین های ویوکمرا از این دسته اند .
۲ـ دوربین های قطع متوسط : این د وربین ها از حجم کمتر ی برخور دارند و به همین دلیل آنها را علاوه بر ر وی د ست در فضاهای غیر آتلیه ای مورد استفاده قرار می دهند . قطع فیلم این دوربین ها ۱۲۰ است . فیلم های ۱۲۰، به عرض ۵/۶۱ میلی متر می باشند و طول آنها ثابت است ، اما بسته به اندازة کادر دوربین ها تعداد متفاوتی را با آن عکاسیم می کنند با این فیلم ها دوربین های کادر ۹*۶ سانتی متری ، ۹کادرودوربین های ۶*۶ ، ۱۲ کادر و دوربین های ۶*۵/۴ ، ۱۶کادرعکسبرداری می کنند .
۳ـ دوربین های قطع کوچک : رایجترین دوربین هایی که در حال حاضر مورد استفادة حرفه ایها و غیر حرفه ایها قرار می گیرند دوربین هایی هستند که از قطع فیلم ۱۳۵ و۱۲۶ بر خوردارند . فیلم های ۱۳۵ دارای عرض ۳۵ میلی متری هستند و در مورد دروبین هایی که کادر ۳۶*۲۴ میلی متری را عکسبرداری می کنند فیلم های ۲۰ ، ۲۴ و ۳۶ قطعه ای عر ضه می شود و دوربین هایی که کادر آنها ۲۴*۱۸ میلی متری است با فیلم ۳۶ قطعه ای ، ۷۲ قطعه را عکسبرداری می کنند .
۴ـ دوربین های مینوکسی یا کاراگاهی : به آن دسته از دوربین ها اتلاق می شود که فیلم ۱۱۰ مصرف می کنند .

۵ـ دوربین های خاص : شامل دوربین های پو لاروید و برخی از دوربین هاست که کاربرد ویژه و تخصصی دارند . علاوه بر اندازه و قطع فیلم ها دوربین ها را از لحاظ نحوه تشکیل تصویردر ویزورنیز مقایسه کرده اند .
در دوربین های قطع بزرگ ، تصویر به صورت واژگون و چپ و راست دیده می شود . در ویزور دوربین های قطع متوسط تصویر چپ وراست دیده می شود و در دوربین های قطع کوچک تصویر هم جهت با موضوع است .
سرانجام آنکه دسته دیگر از طبقه بندی ها بر اساس سیستم ویزور و نحوه نورگیر آنهاست. در اکثر دوربین های قطع بزرگ ویزور خاصی وجود ندارد و نور پس از عبور از لنز به سطح شیشه ماتی که در محل قرار گرفتن فیلم واقع شده است بر خورد می کند .
ویزور انعکاسی ( رفلکس ) : در دو از نوع دوربین ها از ویزورها انعکاسی استفاده می شود .
۱ـ سیستم تک لنز انعکاسی : در این دوربینها تصویری که در ویزور دیده می شود ، از لنز دوربین دریافت شده است . نور با عبور از لنز به آیینه ۴۵ درجه ای بر خور می کند و به ویزور می رسد . آیینه به هنگام عکسبرداری مسیر نور را آزاد کرده و نور به فیلم می رسد . در واقع اختلاف میان تصویر ویزور و تصویر ثبت شده بر روی فیلم وجود نخواهد داشت سیستم دوربینهای تک لنز انعکاسی را (Single Lenz Rflex) SLR می نامند .
۲ـ سیستم دو لنز انعکاسی : در این دوربین ها ، نور از یک لنز عبور کرده و پس از شکسته شدن توسط آیینه به ویزور می رسد و توسط لنز دوم مستقیماٌ به سطح فیلم هدایت می شود به تعبیر دیگر تصویری که توسط چشم دیده می شود ، با آنچه بر روی فیلم ثبت خواهد شد ، کمی فرق دارد و این اختلاف به دلیل فاصلة اندک بین دو لنز است . البته این اختلاف در فواصل کمتر از ۲ متر بر روی تصاویر محسوس تر می شود . در واقع اختلاف زاویه دید بین ویزور و لنز اصلی را خطای دید موازی یا اختلاف منظر ( Parallax ) می نامند .

سیستم دوربین های دولنز انعکاسی را با (Twin Lens Reflex) TLR نشان می دهند که معمولاٌ کادر ۶*۶ سانتی متری را عکسبرداری می کند .


دانلود با لینک مستقیم

دانلود تحقیق درون یک دوربین دیجیتال(همراه با تصاویر)

اختصاصی از یارا فایل دانلود تحقیق درون یک دوربین دیجیتال(همراه با تصاویر) دانلود با لینک مستقیم و پرسرعت .

دانلود تحقیق درون یک دوربین دیجیتال(همراه با تصاویر)


دانلود تحقیق درون یک دوربین دیجیتال(همراه با تصاویر)

 

 

 

 

 

 



فرمت فایل : word(قابل ویرایش)

تعداد صفحات:14

چکیده:

اشاره:
بدون شک تا به‌حال مقالات زیادی در رابطه با دوربین‌های دیجیتالی خوانده‌اید. مقالاتی که بسیار جامع و یا بسیار مختصر نوشته شده‌اند و یا حتی به کالبد شکافی همه و یا یکی از اجزای دوربین‌های دیجیتالی پرداخته‌اند. گاهی نیز دوربین‌ها با هم مقایسه شده‌اند. و ممکن است تصور کنید دیگر چیزی در مورد
دوربین‌های دیجیتال وجود ندارد که نیاز به بررسی و یا اهمیت دوباره‌خوانی داشته باشد. اما در این مقاله ما قصد داریم ضمن آشنا کردن شما با نحوه کارکرد دوربین‌های دیجیتالی، نحوه عکاسی کردن با این دوربین‌ها را نیز بیان کنیم. لطفاً ادامه مقاله را بخوانید.

 

درآمد
بگذارید این‌طور شروع کنیم: شما می‌خواهید یک عکس خانوادگی بگیرید و آن را برای یکی از دوستانتان که در کشور دیگری زندگی می‌کند ایمیل کنید. برای این‌کار شما مجبورید عکس‌تان را به گونه‌ای تهیه کنید که از نظر کامپیوتر قابل تشخیص باشد. مطمئنا انتظار ندارید عکس‌تان را جلوی مانیتور کامپیوتر بگیرید تا آن را ببیند و برای دوستتان تعریف کند! (این مطلب را در صفحه نوستالژی شماره‌ قبل خوانده‌اید!)

 

35mm Full-Frame 11.1-Megapixel CMOS Sensor

بیت‌ها و بایت‌ها همان زبان مخصوص کامپیوتر هستند. هر عکس دیجیتالی عملا زنجیره‌ای از صفر و یک محسوب می‌شود که نقاط رنگی تشکیل دهنده عکس‌ها (پیکسل‌های رنگی) توسط آن‌ها برای کامپیوتر تعریف می‌شوند. همه فرمت‌های خاص عکس، در حقیقت اشکال گوناگون تعریف این نقاط رنگی توسط کامپیوتر به حساب می‌آیند. برای این‌که یک عکس به این فرمت‌ها تبدیل شود دو‌راه وجود دارد. شما می‌توانید به‌وسیله‌ یکی از همان دوربین‌های قدیمی نگاتیوی یک عکس بگیرید.  نگاتیو را به طریقه‌ شیمیایی ظاهر کنید. آن را روی یک کاغذ عکاسی چاپ کنید و سپس توسط یک اسکنر آن را به یک عکس دیجیتالی تبدیل کنید. هرچند که استفاده از یک اسکنر نگاتیوی جدید می‌تواند مرحله‌ چاپ عکس بر روی کاغذ را حذف کرده و عمل تبدیل را مستقیماً از روی نگاتیو انجام دهد، اما مبنای کار باز هم بر دریافت الگوی نوری بازتابش شده و ضبط مقدار ارزش پیکسلی آن‌ها استوار است.
اما راه دوم این است که مستقیماً نور بازتابش شده از موضوع را دریافت کرده و مقدار ارزش پیکسلی آن‌ها را بلافاصله و بدون هیچ واسطه‌ای ذخیره کنید و یا به زبان ساده‌تر از یک دوربین دیجیتال استفاده کنید.
اما اصلی‌ترین تفاوت کار بین دوربین‌های دیجیتالی و آنالوگ در همین نکته نهفته است. مثل تمام دوربین‌های آنالوگ قدیمی، دوربین‌های دیجیتالی نیز دارای تعدادی لنز‌ هستند که می‌توانند نور دریافتی از سوژه را به منظور ایجاد یک تصویر متمرکز کنند. اما به جای این‌که نور متمرکز شده روی یک قطعه نگاتیو حساس به نور متمرکز گردد، روی قطعه‌ای نیمه هادی تابیده می‌شود که قابلیت ضبط الکترونیکی نور را داراست. در مرحله‌ بعدی کامپیوتر با تفکیک اطلاعات الکترونیکی دریافتی از این پروسه به داده‌های دیجیتالی، تصاویر را با فرمت‌های گوناگون ذخیره می‌کند. همه‌ قابلیت‌های هیجان‌انگیز دوربین‌های دیجیتالی از همین قابلیت عملکرد مستقیم ناشی می‌شود.
حالا‌ می‌خواهیم ببینیم دوربین‌ها دقیقا چه کاری انجام می‌دهند.

 

دوربینی بدون فیلم
تفاوت کلیدی بین یک دوربین دیجیتال و یک دوربین نگاتیوی آنالوگ این است که دوربین‌های دیجیتالی فیلم ندارند و در عوض سنسوری دارند که می‌تواند تابش نور را به بار الکتریکی تبدیل کند. سنسورهای دیجیتالی اغلب دارای ابعاد بسیار کوچکتری نسبت به نگاتیو‌های 35میلی‌مترهستند. البته اندازه‌های بزرگ‌تری هم ساخته شده‌اند. مثلا‌ً در دوربین CANON EOS -1Ds نوعی حسگر به کار رفته است که42 x 63 mm  می‌باشد و وضوحی برابر1/11مگاپیکسل دارد.

 

سنسور تصویری به کار رفته در اغلب دوربین‌های دیجیتالی موجود از نوع ‌Charge Coupled Device)CCD) می‌باشد. البته برخی دوربین‌های ساده‌تر از نوع دوم سنسور‌ها یعنی تکنولوژی Complementary Metal Oxide Semiconductor)CMOS) نیز استفاده می‌کنند. علیرغم بهبود‌هایی که در سنسور‌های CMOS حاصل شده و احتمالاً می‌تواند در آینده بیشتر مورد استقبال عموم قرار گیرد اما بعید به نظر می‌رسد بتواند به طور کلی در دوربین‌های حرفه‌ای‌تر جانشین سنسور‌های CCD شود. در طول این مقاله ما بیشتر روی فناوری CCD تمرکز می‌کنیم. البته برای سادگی کار می‌توانید هر دوی آن‌ها را یکسان فرض کنید. زیرا این دو، از نظر ماهیت عملا یکسان هستند تنها از لحاظ استفاده از نور دریافتی متفاوت از یکدیگر عمل می‌کنند. بنابراین بیشتر چیزهایی که درباره ‌CCD‌ها یاد می‌گیریم قابل تعمیم به CMOS‌ها نیز هستند.
سنسور‌های نوری مجموعه‌ای متشکل از هزاران ردیف بسیار کوچک از دیود‌های حساس به نور هستند که می‌توانند فوتون‌های نور را به بار الکتریکی تبدیل کنند. این دیود‌های یک‌سویه را
Photosite می‌نامند. هر فوتوسایت به تابش نور حساس است و مسلماً هرچه نور تابیده‌ شده بر آن شدت بیشتری داشته باشد، بار الکتریکی بیشتری در آن انباشته خواهد شد.
در حسگر‌های
CCD این بار الکتریکی انباشته شده در هر فوتوسایت به صورت تک به تک و ردیف به ردیف خوانده می‌شود و اصولاً تشخیص مقدار یک بار الکتریکی وابسته به مکان آن در میان دیگر فوتوسایت‌ها می‌باشد. ضمن این‌که قبل از آن‌که سنسور نوری بتواند آماده‌ عکسبرداری شود لازم است که تمام اطلاعات مربوط به عکس قبلی از روی آن به طور کامل خوانده و حذف شود. اما در سنسور‌های CMOS، هر یک از عناصر حساس به نور دارای یک آدرس طولی و عرضی مشخص است و می‌تواند به طور منفرد توسط محور‌های X و Y آدرس‌دهی و خوانده شود. مطلب کمی پیچیده شد؟ بهتر است کمی بیشتر درباره‌ آن بحث کنیم.

 

CMOS در مقابل CCD  
دقیقا از مرحله‌ای که فوتون‌های نور توسط فوتوسایت‌ها به الکترون تبدیل می‌شوند، تفاوت بین دو نوع حسگر اصلی آشکار می‌شود. مسلماً مرحله‌ بعدی عبارت است از خواندن مقادیر بار انباشته شده در هر سلول و تشخیص یکسل رنگی مربوط به آن. در سنسور‌های CCD بار الکتریکی شارژ شده از یک گوشه‌ سنسور خوانده شده و ردیف به ردیف جلو می‌رود و به طور همزمان یک مبدل آنالوگ به دیجیتال متناوب با تمام مقادیر دریافتی از پیکسل‌ها را به مقادیر دیجیتالی تبدیل می‌کند. اما CMOSها دارای چندین ترانزیستور مختلف در سر راه داده‌ها هستند که با تقویت و جابه‌جا کردن بار‌های الکتریکی توسط سیم‌های متصل به آن‌ها، مقادیر را جداگانه و تک به تک به پردازشگر ارسال می‌کنند. هرچند که انعطاف‌پذیری این شیوه به مراتب بالاتر از روش سطر به سطر است و می‌تواند برای کاربرد‌هایی مثل فوکوس خودکار و اندازه‌گیری نور مفید واقع شود. اما عملا سیگنال دریافتی ازCCDها شفاف‌تر می‌باشد. CCDها برای ایجاد قابلیت ارسال بار بدون اعوجاج و تحریف، از یک پروسه‌ صنعتی خاص استفاده می‌کنند و این پروسه روشی را ارایه می‌دهد که موجب خلق تصاویری بسیار شفاف می‌شود. اصلی‌ترین تفاوت‌های بین سنسورهای CMOS و CCD را می‌توان به این شکل فهرست کرد:‌

سنسور‌های CCD  همانطور که در بالا گفته شد تصاویری با کیفیت بالاتر و اختلال کمتری به‌وجود می‌آورند. اما به طور تجربی ثابت شده که سنسور‌های CMOS  برای ایجاد نویز و اختلال بسیار مستعد‌ترند.

از آنجا که هر پیکسل در سنسور‌های CMOS  دارای چندین ترانزیستور مرتبط است که در کنار آن‌ها قرار می‌گیرد، حساسیت این سنسور‌ها به نور پایین‌تر می‌آید. چرا که بسیاری از فوتون‌های نور به جای این‌که با سطح دیودهای نوری برخورد کنند با این ترانزیستورها برخورد کرده و به هدر می‌روند.

سنسور‌های CCD  به مصرف توان بالا معروفند. این سنسور‌ها در مقایسه با سنسورهای CMOS تقریبا 100 مرتبه بیشتر از باتری استفاده می‌کنند.
CCD ها به علت تولید بالاتر، بسیار بیشتر ازCMOS  ها مورد تحقیق و بررسی قرار گرفته‌اند و مسلما روش‌های تولید اقتصادی‌تر و با کیفیت‌تری برای آن‌ها ابداع شده است. به همین دلیل می‌توان مشاهده کرد که اغلب دوربین‌های با کیفیت و مارک‌های معتبر جهان از این سنسور بهره می‌برند.

از آن‌جا که تقویت کننده سیگنال‌های نوری در CMOS  بلافاصله بعد از هر فوتوسایت قرار دارد بنابراین این نوع حسگر‌ها می‌توانند تصاویر را دو برابر سریع‌تر نسبت بهCCD ها انتقال دهند.
براساس گفته‌های بالا متوجه می‌شوید که
CCD ‌ها بیشترین استفاده را در دوربین‌هایی دارند که بیشتر بر کیفیت بالاتر تصویر، مقدار بیشتر پیکسل‌های تصویر و حساسیت به نور بالا‌تر تأکید دارند. اما در عوض سنسور‌هایCMOS  دارای قیمت کمتر هستند و بیشتر در دوربین‌هایی به کار می‌روند که از نظر اقتصادی به صرفه بوده و دارای منبع انرژی محدودتری می‌باشند.

 

وضوح (Resolation)
 مقدار جرییاتی که هر دوربین می‌تواند روی یک تصویر ضبط کند، رزولوشن (وضوح) نامیده می‌شود و توسط واحد پیکسل اندازه‌گیری می‌شود. هرچه وضوح دوربین شما بالاتر باشد مقدار جزییاتی بیشتری را می‌توانید در تصویر خود بگنجانید و هرچه مقدار این جزییات در تصویر بیشتر باشد می‌توانید در هنگام چاپ اندازه آن را بزرگتر کنید بدون آن‌که تصویر شما محو یا دندانه‌‌دندانه شود. انواع وضوح‌های دوربین‌ها این‌گونه است:

256
x256 پیکسل: این اندازه وضوح روی دوربین‌های بسیار ارزان قیمت دیده می‌شود و بسیار ناچیز تر از آن است که برای چاپ مورد استفاده قرار گیرد. وضوح نمایشگر برخی از گوشی‌های موبایل در همین حد است و می‌توان از تصاویری با این خصوصیت برای نمایش در آن‌ها استفاده کرد. این وضوح کلاً دربردارنده‌ 65هزار پیکسل است.

640x640 پیکسل: این ابعاد حداقل اندازه وضوح در دوربین‌های واقعی است و بهترین اندازه برای تصاویری است که می‌خواهید آن‌ها را روی وب قرار داده و یا از طریق اینترنت برای کسی ایمیل کنید. این مقدار وضوح دربردارنده‌ 307000 پیکسل می‌باشد.

1216x912 پیکسل: اگر تصمیم دارید تصاویرتان را در ابعاد معمولی عکس‌های نگاتیوی چاپ کنید این وضوح بهترین انتخاب است. چرا که اولین نوع وضوح از رده مگاپیکسل محسوب می‌شود و حدودا دارای 000/109/1 پیکسل می‌باشد.

1600x1200 پیکسل: تصاویری با این مشخصات به عنوان تصاویر وضوح بالا محسوب می‌شوند و می‌توانند بدون هیچ مشکلی تا ابعاد 30x40 سانتی‌متر که بالاترین اندازه پیشنهادی عکاسان برای چاپ نگاتیوهای دوربین‌های 35  میلی‌متری می‌باشد چاپ شوند. این مقدار وضوح  دربردارنده‌ حدودا دومیلیون پیکسل رنگی می‌باشد و برای استفاده‌ خانگی بسیار مناسب است. هرچند که تا به امروز دوربین‌هایی تا وضوح 14میلیون پیکسل نیز ساخته شده است اما پیشنهاد مناسب برای کسانی که درباره‌ دوربینی مناسب برای کاربردهای خانگی سؤال می کنند یک دوربین دومگاپیکسلی می‌باشد. شما که نتیجه‌ای بهتر از نتیجه‌ دوربین‌های نگاتیوی معمولی احتیاج ندارید؟

 

 

وضوح مناسب برای وب و ایمیل‌
اگر تنها تصمیم دارید تصاویری برای صفحه وب خانگی یا وبلاگ خودتان تهیه کنید و یا عکس‌های یادگاری برای دوستانتان بفرستید استفاده از وضوح 640x480 مناسب است. ضمن آن‌که مزیت‌های دیگری نیز دارد که عبارتند از:‌

صفحه‌ی وب یا وبلاگ شما به دلیل حجم کم این تصاویر زودتر نمایش داده می‌شود.
حافظه‌ محدود دوربین‌ها (در انواع معمولی بدون فلاش کارت 8 تا 16 مگابایت) امکان ذخیره‌ تعداد عکس بیشتری را به شما می‌دهد. شاید تا وقتی با دوربینتان به یک مسافرت چند روزه نروید ارزش این مزیت را متوجه نشوید!
زمان انتقال این تصاویر به کامپیوتر بسیار کمتر خواهد شد. مخصوصا اگر از کابل‌های ارتباطی COM یا ارتباط مادون قرمز به جای پورت‌های USB  استفاده می کنید.
تصاویر گرفته شده حجم کمتری را روی کامپیوترتان اشغال می‌کنند (هرچند که امروزه برای بیشتر کاربران این مسأله موضوع مهمی نیست).

تشخیص رنگ‌ها
متاسفانه باید بگویم که تمام فوتوسایت‌ها کوررنگی دارند!  دانستیم که فوتوسایت‌ها مراکزی هستند که با جذب نور، بارالکتریکی تولید می‌کنند. اما این مراکز قدرت تشخیص رنگ‌ها را ندارند و تنها می‌توانند میزان شدت نور تابیده شده را گزارش کنند. بسیاری از حسگرها این مشکل را توسط فیلترهای رنگی حل کرده‌اند. هنگامی که رنگ‌ها ضبط و ذخیره می‌شوند، می‌توان از آن‌ها برای ترکیب و به دست آوردن رنگ‌های دیگر طیف نورکه شما معمولا روی صفحه‌ی مانیتور می‌بینید استفاده کرد. اما این کار چگونه انجام می‌شود؟
چندین راه برای ضبط سه رنگ اصلی تشکیل‌دهنده‌ طیف نوری در دوربین‌های دیجیتالی وجود دارد. دوربین‌هایی که بالاترین کیفیت را دارند، از سه حسگر جداگانه استفاده می‌کنند که هر یک دارای یک فیلتر رنگی جداگانه بر روی خودش است. نور توسط یک تقسیم‌کننده نور(
Beam Splitter) که درون دوربین تعبیه شده به حسگر‌های مختلف فرستاده می‌شود. فرض کنید که یک لوله‌ آب داریم که در انتهای آن یک سه راهی وجود دارد و می‌تواند آب ورودی را به مقادیر مساوی تقسیم کرده و از هر یک از سه انشعاب خود بیرون بفرستد. بنابراین هر حسگر تصویری مشابه حسگر دیگر را دریافت می‌کند. اما از آن‌جا که رنگ فیلتر‌های روی هر حسگر متفاوت است، هر حسگر تنها به یکی از رنگ‌های اصلی واکنش نشان می‌دهد.
مزیت استفاده از این سیستم این است که هر فوتوسایت حسگر می‌تواند هرکدام از سه رنگ تابیده شده را دریافت و ضبط کند. متأسفانه دوربین‌هایی که از این روش استفاده می کنند نه تنها حجم بیشتری دارند بلکه بسیار گران نیز هستند.

راه دیگر استفاده از تعدادی فیلتر چرخان با سه رنگ قرمز و آبی و سبز در مقابل تنها یک حسگر است. این فیلتر هربار که می‌چرخد روی یکی از رنگ‌ها قرار می‌گیرد و دوربین می‌تواند نور تابیده شده از میان آن فیلتر را ضبط کند. هنگامی که هرسه نور تابیده شد، تصاویر حاصل از این سه فیلتر رنگی با هم ترکیب شده و تصور کامل حاصل می‌گردد. هرچند که در این روش هر پیکسل از ترکیب هر سه رنگ حاصل می‌شود اما عملاً نتیجه عکسبرداری از تصاویر چندان واقعی به نظر نمی‌رسد. چرا که ممکن است تصویر دقیقا همان چیزی نباشد که در عکس قبلی با یک فیلتر دیگر ذخیره شده بود. بنابراین چنین دوربین‌های برای عکسبرداری از تصاویر با سرعت حرکت زیاد مثلا‌ً مسابقات اتومبیل‌رانی اصلا‌ً مناسب نیستند.

روش دیگری که در دوربین‌ها استفاده می‌شود روش
Interpolation (درون یابی) است.(درون یابی در لغت به معنای محاسبه مقادیر واسط بین دو نقطه است.) این روش یکی از عملی ترین و اقتصادی‌ترین روش‌های جدا کردن سه رنگ اصلی از یک عکس منفرد است. برای این کار روی هر یک از فوتوسایت‌ها به طور جداگانه یک فیلتر رنگی قرار می‌گیرد و در حقیقت حسگر نوری را به یک دسته پیکسل‌های رنگی قرمز و آبی و سبز مبدل می کند. با این کار می‌توان به سادگی با اطلاعات به دست آمده از میانگین مقدار رنگ پیکسل‌های همجوار به تخمین دقیقی از رنگ‌های هر موقعیت مکانی دست یافت. پروسه‌ یافتن مقدار تخمینی رنگ‌های بین دو نقطه‌ رنگی را درون‌یابی می‌نامند. (درباره‌ این روش بیشتر توضیح خواهیم داد . فعلا برای سادگی کار هر یک از فوتوسایت‌ها را به صورت یک پیکسل رنگی قرمز ، آبی یا سبز در نظر بگیرید که با ترتیب خاصی در کنار هم قرار گرفته‌اند).

 

فیلتر بایر (Bayer Filter)
الگوی معمول فیلتری که در قسمت تشخیص رنگ درباره آن صحبت کردیم الگویی به نام فیلتر بایر است. این الگو روش چیدمان فیلتر‌های رنگی را در حسگر‌های نوری‌ که به روش درونیابی عمل می‌کنند توجیه می کند. در این الگو روش چیدمان رنگ‌ها به صورت یک در میان قرمز و سبز و در جهت عمود بر آن به صورت یک در میان آبی و سبز می‌باشد. احتمالا می‌پرسید چرا رنگ سبز در هر دو ردیف قرار می‌گیرد؟ در این فیلتر رنگ سبز به دقیقاً  دوبرابر هر رنگ ( و برابر با مقدار هر دورنگ) می‌باشد. زیرا چشم انسان نسبت به این سه رنگ اصلی حساسیت یکسانی ندارد و ضروری است که اطلاعات رنگی ذخیره شده نسبت به رنگ سبز بیشتر از دو رنگ دیگر باشد. با این کار درک چشم ما از تصویر ضبط شده، تصویری طبیعی‌تر خواهد بود.
مزیت این روش این است که تنها به یک حسگر نوری احتیاج دارد و ذخیره‌ اطلاعات رنگی (قرمز، سبز و آبی) در یک لحظه ‌و به صورت همزمان اتفاق می‌افتد. این مطلب بدین‌معنی است که می‌توان دوربین‌هایی بسیار ارزان و کم حجم و کارآمد تهیه کرد که در بسیاری از موقعیت‌های مکانی کاربرد داشته باشند. خروجی فایل
RAW از یک حسگر با فیلتر بایر یک تصویر شطرنجی از رنگ‌های قرمز و آبی و سبزبا شدت‌های مختلف می‌باشدکه برای ایجادتصویربه مرحله‌ Interpolation می‌رود.

 

 

 

 

 

فیلمبرداری

بسیاری از دوربین‌های عکاسی به شما امکان فیلمبرداری را نیز می‌دهند. هرچند نباید انتظار داشت که کیفیت این فیلم‌ها که در اکثر مواقع در قالب MPEG ذخیره می‌شوند، قابل مقایسه با دوربین‌های فیلمبرداری VHS یا DV باشد اما برای استفاده خانگی چیزی کم از دوربین‌های گوشی‌های موبایل‌های گران‌قیمت جدید ندارند. آن‌ها می‌توانند بسته به حافظه‌ دوربین‌، حدود چند دقیقه فیلم ضبط کنند (البته در صورت اتصال همزمان به کامپیوتر می‌توان زمان آن را افزایش داد) که وضوحآن معمولاً به بیش از 640x480 نمی‌رسد. در هنگام خرید دوربین توجه کنید که دوربین‌تان علاوه بر امکان ذخیره‌ تصویر، امکان ذخیره‌ صدا را نیزدارا باشد. دیدن یک فیلم صامت چندان جذاب نخواهد بود.

اگر با دقت نگاهی به این الگوی جداسازی رنگ‌ها بیندازید احتمالا شگفت‌زده خواهید شد که چگونه از این رنگ‌های اصلی شطرنجی که به صورت چهار رنگ (دو رنگ سبز و یک قرمز و یک آبی) دریافت می‌شوند، رنگ های حقیقی تصاویر با هاله‌هایی از تغییرات رنگ طبیعی به‌دست می‌آید؟ جواب مسأله در این‌جاست که دوربین‌های دیجیتالی از یک الگوریتم تبدیل به نام Demosaicing Algorithms استفاده می‌کنند که می‌تواند این رنگ‌های شطرنجی (یا موزاییکی) جدا از هم را به یک پیکسل رنگی برابر با رنگ حقیقی مبدل کند.  در واقع هر یک از این رنگ‌های جداگانه در حقیقت بیش از یک‌بار در بازسازی رنگ‌ها مورد استفاده قرار می گیرند و هر پیکسل رنگی با میانگین گرفتن از میزان شدت و نوع رنگ احاطه‌کننده‌اش، ساخته می‌شود.
دوربین‌های مختلف از راه‌های گوناگون دیگری نیز برای به‌دست آوردن میزان شدت و نوع رنگ‌های دریافتی استفاده می‌کنند. به عنوان مثال یکی از شرکت‌های معتبر سازنده دوربین و لنز به نام
Foevon ، حسگری ابداع کرده است که از هر سه فیلتر آبی، سبز و قرمز بر روی تمام سطح حسگر خود استفاده کرده است. ممکن است تعجب کنید که چطور یک حسگر می‌تواند هر سه نور رنگی اصلی را که به سطح آن تابیده می‌شود محاسبه کند. در صورتی‌که همان‌طور که گفتیم فوتوسایت‌کور رنگی دارند. تکنولوژی پیشرفته‌ این دوربین که X3 technology نامیده می‌شود از روش خلاقانه‌ قرار دادن سه تشخیص‌دهنده نور در داخل سیلیکون حسگر استفاده می‌کند و هنگامی که نورهای آبی، سبز و قرمز به سطح آن تابیده می‌شوند، از آن ‌جایی که هر یک از آن‌ها دارای قدرت نفوذ مشخصی به داخل سیلیکون حسگر هستند، می‌توانند میزان  شدت نور را برای هر یک از این سه رنگ تابیده شده بر سطح فوتوسایت تعیین کنند.
تکنولوژی دیگری که توسط شرکت سونی ابداع شده از یک رنگ
Cyan (سبز آبی) به جای یک ردیف از رنگ‌های سبز استفاده می‌کند و یا در برخی دوربین‌ها به جای رنگ‌های (قرمز، سبز، آبی) از چهار رنگ سبزآبی، زرد، سبز و قرمزآبی استفاده می‌شود. اما در هر حال امروزه در اکثر دوربین‌های موجود در بازار از دوربین‌های تک حسگره با فیلتر‌های بایر استفاده می‌شود.

 

دیجیتالی کردن اطلاعات
 تا این‌جا آموختیم که حسگر چیست و نور تابیده شده به سطح آن چگونه به بار‌های الکتریکی با شدت‌های مختلف تبدیل می‌شود. اما این بار‌های الکتریکی که توسط حسگر‌ها تولید می‌شوند نمی‌توانند به عنوان علائم دیجیتال مورد استفاده کامپیوتر قرار بگیرند. به منظور دیجیتالی کردن اطلاعات، این سیگنال‌ها باید از میان یک مبدل دیجیتال به آنالوگ (ADC: Analog to Digital Convertor)  عبور کنند. در حقیقت عملیات دورن‌یابی نیز پس از همین تبدیل شروع می‌شود.
برای ساده شدن بحث، تصور کنید که هر کدام از فوتوسایت‌هایی که درباره‌ آن صحبت کردیم یک سطل آب هستند و فوتون‌های نور را به صورت قطرات بارانی فرض کنید که به داخل آن‌ها ریخته می‌شوند. همینطور که دانه‌های باران به داخل سطل ریخته می‌شوند، سطل از آب پر می‌شود (در حقیقت از بار الکتریکی انباشته می‌شود). از آنجا که مقدار بارش باران به داخل هر یک از این سطل‌ها یکسان نیست، بعضی از آن‌ها پر می‌شوند و بعضی دیگر هم نیمه پر و یا خالی می‌مانند. حالا سطل‌هایی داریم که دارای مقادیر مختلفی از آب (یا بار الکتریکی) هستند (که بستگی به روشن‌تر بودن یا تاریک‌تر بودن نور تابیده شده دارد). سپس
ACD یا مبدل آنالوگ به دیجیتال، مقدار آب انباشته شده در هر سطل را اندازه‌گیری کرده و اطلاعات به دست آمده را در مبنای باینری یا دو دوئی که مبنای مورد استفاده کامپیوتر است، گزارش می‌کند. در قسمت بعدی این مقاله، به مسائل مربوط به دیدن تصاویر، ویرایش، لنزها و راهنمای خرید دوربین خواهیم پرداخت.


دانلود با لینک مستقیم