یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

اهمیت و کاربرد کند کننده‌های رشد گیاهی در کشاورزی

اختصاصی از یارا فایل اهمیت و کاربرد کند کننده‌های رشد گیاهی در کشاورزی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

بسمه تعالی

اهمیت و کابرد کند کننده های رشد گیاهی در کشاورزی:

کند کننده های رشد گیاهی گروهی از ترکیبات شیمیائی یا مصنوعی هستند که بدون اینکه تغییری در شکل ظاهری گیاه و یا تعداد برگ ها و شاخه ها و سایر اندام های آن به وجود آورد،از رشد گیاه می کاهند.این مواد از تقسیم رشد یاخته ای درناحیه زیر مرسیتمی انتهای شاخه ها جلوگیری به عمل می آورد ولی بر روی خود مریستم تأثیری ندارد و در نتیجه، گیاه در عین حال که به تعداد طبیعی شاخه و برگ و میوه تولید می کند. به اندازه معمول رشد نمی کند و کوتاه می ماند. همین باعث می شود که سال بعد، از سوئی تعدا گل های تولید شده به میزان قابل توجهی بیشتر گردد، و از دگر سو نیاز به هرس تا حد زیادی کاهش می یابد. مطالعات بافت شناسی روی قسمت های مختلف ساقه گیاهچه های آفتابگردان،سویا و ذرت که با تتسی کلاسیس تیمار شده بودند نشان داد که نوع اثر کننده ها روی رشد طولانی به غلظت به کار برده شده بستگی دارد.بنابراین،کوتاه شدن گیاهانی که در غلظت پائین کند کننده ها رخ می دهد،عمدتاً به دلیل جلوگیری از بزرگ شدن سلول هاست،ولی در غلظت های بالا، این کوتاه شدن قسمتهای ساقه،عمدتاً به دلیل کاهش تقسیم سلولی است.در نتیجه،فرآیند بزرگ شدن سلول نسبت به تقسیم سلولی در واکنش به کند کننده های رشد از حساسیت بیشتری برخوردار است. در مقایسه با ساقه، کند کننده های رشد، اندازه ریشه را حفظ کرد، یا تا اندازه ای افزایش می دهند، بنابراین همان طور که ملاحظه می شود نسبت ریشه به ساقه به نفع ریشه تغییر می کند. این ترکیبات، مصارف و اثرات مفید زیادی دارند که در زیر به نمونه هائی از آنها اشاره می شودو اثرات دیگر و مکانیزم آنها در بخش های بعدی ذکر می شود.

1-کنترل درس در غلات و محصولات دانه ای به خصوص گندم، تحت شرایط کود زیاد و در آب و هوای مرطوب، نظیر اروپای غربی،بار گندم اغلب سنگین بود. و می خوابد که قابل درو کردن با ماشین نیست. کابرد کلرمکوات کلراید(سایکوسل،سی سی سی،کلروکلین کلراید) با فرمول2-کلرو اتیل-تری متیل-آمونیم کلراید سبب تولید ساقه کوتاه و محکم می شود به طوری که خوابیدن بوته جلوگیری می گردد.

2-کاهش ارتفاع گیاهان زینتی از قبیل داوودی. بنت القنسول و سوین. از نظر تجاری، ارتفاع گیاه گلدار زینتی به طور مطلوب.40-35 سانتی متر است، در صورتی که ارتفاع طبیعی آنها به یک متر یا بیشتر می رسد. مصرف مواد کند کننده رشد روی برگ ها یا در خاک وقتی گیاه جوان است، تأثیر روی اندازه گل ندارد ولی منجر به ساقه خیلی کوتاه می شود.اشرفی«cireopsis verticillata »از گیاهان چند ساله است که برا ی گلدهی به فتو پریودهای طولانی بالاتر از 14 ساعت احتیاج دارد.اشرفی در لدانهای کوچک تحت شرایط گلخانه، خیلی دراز می شود. طی آزمایشی دوکند کننده رشد یعنی دامینزید (الار.اس ای دی اچ ، بی-ناین،بی-995،بی-9ای) وفلور پریمیدول (کاتلس) ، بهترین کند کننده ها برای ایجاد بازارپسندی در این گیاه تشخیص داده شدند.

3-کنترل رشد درختچه ها: این امر مخصوصاً در طول جاده ها حتی اگر گیاهان کشت شده تزئینی باشند و در زیر کابل های فشار قوی مهم است.پاشیدن مواد کند کننده رشد بعد از باز شدن جوانه ولی قبل از طویل شدن ساقه منتهی به همان تعداد برگ می شود لی ساقه کوتاه، کوتاه می ماند و نیاز به هرس کردن کاهش می یابد.

4-اثرت ویژه روی کمیت، کیفیت یا رسیدن میوه: انواع زیادی از این اثرات مواد کند کننده رشد ملاحظه شده است. پژوهش ها نشان می دهند که مصرف آلار(بیشترین مصرف را در باغبانی دارد) بر روی درختانی مانند انجیر، گلابی و بعضی از انواع سیب که میوه های نرم تولید می کنند که ترابری (حمل و نقل)آنها دشوار است،باعث می شود که میوه رسیده بدون آنکه فرایندهای رسیدنش آسیبی ببیند، از بافت محکم تری برخوردار شود و قابلیت نگهداری و حمل و نقل آن افزوده گردد. برای میوه های هسته دار (مانند هلو، گیلاس و آلبالو)، مصرف آلار با غلظت های 8-2 در هزار، در اوایل تابستان باعث می شود که رسیدن میوه از سوئی 14-6روز زودتر انجام می شود و از سوئی دیگر یکنواخت گردد از اثرات بسیار مهم محلول پاشی آلار(پس از شکفتن گل ها) بر گیاهانی مانند گوجه فرنگی و انگور، بالا رفتن تعداد میوه های تشکیل شده می باشد. غلظت محلولی که بدین منظور به کار برده می شود،بر حسب نوع گیاه،5%الی 5/2در هزار است که گاهی تعداد میوه های بعضی از ارقام انگور به راحتی به 2 برابر تعداد میوه گیاهان شاهد می رساند. همچنین، سایکوسل باعث افزایش عملکرد در سیب و گلابی می شود و این عمدتاً به دلیل کاهش دادن ریزش میوه می باشد.

5- افزایش مقاومت در برابر تنش های محیطی: بسیاری از گیاهان باغی و زراعی که با مواد کند کننده رشد محلول پاشی شده اند، در برابر تنش های محیطی مقاومت بیشتری نشان داده اند. آزمایشات زیادی در مورد کند کننده های رشد گیاهی تا به حال انجام گرفته است. در آزمایشی واکنش های نهال های اوکالیپتوس(eucayptus nitens) را به سه کند کننده رشد سایکوسل، پاکلوبوترازول(بنزی) و پروهگزادیون کلسیم مورد بررسی قرار دارند. پاکلوبوترازول بالاترین تاثیر را در کاهش رشد و نسبت های GA20 و GA1 داشت و سپس سایکوسل و پروهگزادیون دارای کمترین تاثیر بودند. هیچ کدام از این کند کننده ها در تحریک گل تاثیر نداشتند.

طی آزمایشی که نهالهای نوئل(picea martana)20هفته ای مورد بررسی قرار گرفتند. ریشه نهال ها با 60میلی گرم پاکلوبوترازول خیسانده شد و نهال ها در معرض دمای 22 درجه سانتی گراد قرار گرفتند. رشد نهالهای نوئل که با پاکلو بوترازول تیمار شده بودند حدود 30 درصد کاهش یافت، اما میانگین وزن خشک برگ های سوزنی این نهال ها 90 درصد سنگین از برگ های تیمار نشده بود. میزان کلروفیل و کار تنوئیدها به طور معنی داری در نهال های تیمار شده بالاتر بودند.

طی آزمایشاتی که روی گیاهان مختلف از جمله چغندر قند، سویا و گردوی گرمسیری (pecan ) تیمار شده با پاکلوبوترازول، سویای تیمار شده با بی تی -اس 44584، پنبه تیمار شده با مپیکوات کلراید، شمعدانی و گندم با کلرومکوات کلراید و گندم تیمار شده با دیمفون (بیلتون) و یونیکونازول (سوماجیک، اس-3307، اکس ای-1019) انجام شده است، برگ های این گیا هان ضخیم تر شده و وزن ویژه برگ (SLW) و وزن مخصوص برگ (SLA) و میزان کلروفیل افزایش یافت. نسبت هایی از پاکلوبوترازول روی گیاه چغندر بدون اینکه اثر سمی ایجاد کند باعث شد برگ های این گیاه نسبت به شاهد دو برابر ضخامت داشته باشند ومیزان کلروفیل در واحد سطح نیز تا اندازه ای افزایش یافت.


دانلود با لینک مستقیم


اهمیت و کاربرد کند کننده‌های رشد گیاهی در کشاورزی

پوشش‌های لایه نازک، کاربرد خواص مکانیکی و روش‌های اندازه‌گیری

اختصاصی از یارا فایل پوشش‌های لایه نازک، کاربرد خواص مکانیکی و روش‌های اندازه‌گیری دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 31

 

عنوان

پوششهای لایه نازک، کاربرد خواص مکانیکی و روشهای اندازه گیری

خواص مکانیکی لایه ها

ترکیب عمومی (طرح عمومی)

رفتار مکانیکی لایه ها از دو دیدگاه اصلی دارای اهمیت است. در اصل،‌ مطالعه و فهمیدن چنین رفتارهایی می‎تواند منجر به درک بهتر ما از خواص تودة مواد شود. در عمل کار رضایت بخش بسیاری از قطعات لایه ای به شکل و ترتیب قرار گرفتن لایه های پایدار- که می‎توانند در برابر تاثیرات محیط زیست تاب بیاورند- بستگی بحرانی دارد.

مانند خیلی از خواص دیگر لایه ها، خواص مکانیکی لایه ها هم به چند تایگی معمولی فاکتورهای وابسته در آماده سازی آنها بستگی دارد. به دلیل مشکلات تجربی و محدودیت های موجود در آزمایشها، اکثریت کار انجام شده روی خواص مکانیکی روی لایه های چند بلوری انجام گرفته و این به خاطر ساختار مختلط بیشتر لایه ها است. مطالعاتی دربارة برآراستی لایه ها انجام شده، اما طبیعت اندازه گیری دقیق،‌ که مستلزم استخراج اطلاعات خواص مکانیکی است،‌ و عدم قطعیت مشکلاتی را در این مطالعات ایجاد می‌کند.

بیشتر مطالعات انجام شده دربارة لایه های فلزی بوده اند و به مواد دی الکتریک که در قطعات الکتریکی و اپتیکی گوناگون اهمیت دارند نیز توجه شده است. اندازه گیری ها شامل فشار (تنش) و کرنش، خزش، رفتار قالب پذیری و نرمی، قدرت شکست و در پایین ترین سطح و کمترین حد شامل سختی می‎شوند. مدلهای تئوری گوناگونی پیشنهاد شده اند که اگرچه در این مرحله حتی در جزئیات با تجربه توافق دارند ولی آنها را در نظر نمی گیریم. با وجود این، یک اصول عمومی وجود دارند که به عنوان راهنما برای کارهای بعدی بکار گرفته می‎شوند.

وقتی لایه ها با تبخیر گرمایی، یا با تجربه بخار روی یک بستر گرمایی، شکل می گیرند، آنگاه اگر ضریب انبساط لایه ها و بستر گرمایی یکسان باشد وقتی سیستم تا دمای اتاق سرد می شود، یک فشار گرمایی ایجاد شده و پیشرفت می‌کند. این اثر- که در بسیاری از موارد اتفاق می افتد- خودش را به شکل جداسازی لایه ها از سطح به وضوح نشان می‎دهد. در حقیقت هنگامی که بستر گرمایی در دمای اتاق است، فشار گرمایی ذخیره شده در لایه های رسوبی رابا هیچ وسیله ای نمی توان آشکار کرد. دمایی که لایه ها در آن شکل می گیرند، از آنجایی که مفهوم بد تعریفی است، ممکن است با دمای بستر گرمایی تفاوت داشته باشد. مخصوصا وقتی که اتمهای چگالیده با یک سرعت بالای گرمایی وارد می‎شوند: اثر «دما»ی لایه های چگالیده به عاملهای تعادل که گرمای مادة چگال را کنترل می‌کنند بستگی دارد و این عاملها معمولاً به سختی قابل تشخیص هستند. قستمی از دمای سطح بستر گرمایی توسط تابشهای دریافت شده از منبع تعیین می‎شود و قسمتی از آن را گرمای نهانی که توسط لایه های چگالیده داده شده تعیین می‌کند. وقتی ضخامت لایه های فلزی افزایش پیدا می کند، کسر بزرگی از انرژی گرمایی که از بستر گرمایی تابش می کند ممکن است بازتابیده شود. بعلاوه وقتی ثابتهای اپتیکی لایه های بسیار نازک با ضخامت به سرعت (و اغلب با رفتاری بسیار پیچیده) تغییر می‌کنند این اثر به دشواری قابل تشخیص است. قبل از بحث کردن دربارة جزئیات این اثر،‌ می‎پردازیم به روشهای تجربی ای که برای مطالعه خواص مکانیکی لایه های نازک به کار می روند.

2-5) تکنیک های تجربی

الف) اندازه گیری تنش و کرنش

اندازه گیری تنش (فشار) در لایه ها معمولاً با تکنیک باریکه- خمش انجام می‎شود. تکنیکی که در آن لایه ها روی یک باریکة مستطیلی نازک ته نشین شده و رسوب می‌کنند. در اندازه گیری انحرافهای کوچکی که در تداخل سنجی،‌ ظرفیت و نظم و ترتیب الکترومکانیکی به کار گرفته شده رخ می‎دهد هر تغییری می‎تواند در روشها ایجاد شود. در بیشتر موارد حل عمومی برای خمش باریکة مرکب از دو ماده با خواص الاستیکی متفاوت، تا وقتی که ضخامت لایه در برابر ضخامت باریکه کم است، مورد نیاز نمی باشد.

اگر لایه ها به طور ثابتی مقید به بستر گرمایی باشند و اگر شارش نرم و قالب پذیری در سطح میانی به وجود نیاید آنگاه برای ضخامت باریکه (d) ، مدول یانگ (Y)، نسبت پواسون () و فشار (S) در ضخامت لایه (t) داریم:

(1-5)

وقتی که شعاع انحنای فشار باریکة اولیه،‌ مستقیم فرض شود.

اندازه گیری مستقیم کرنش با متد بارگیری مستقیم علیرغم مشکلات زیادی که وابسته به زیاد شدن لایه ها است، بکار می رود. طرح یکی از سیستمهایی که استفاده می‎شود در


دانلود با لینک مستقیم


پوشش‌های لایه نازک، کاربرد خواص مکانیکی و روش‌های اندازه‌گیری

مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

اختصاصی از یارا فایل مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن دانلود با لینک مستقیم و پر سرعت .

مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن


مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

لینک پرداخت و دانلود در "پایین مطلب"

 

فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات:63

کاربرد تبدیل لاپالس در تحلیل مدار

16-1- مقدمه

تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است. نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد. دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند. بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند. اما در روشهای کلاسیک حل معادلات دیفرانسیل شرایط اولیه زمانی وارد می شوند که می خواهیم ضرایب مجهول را محاسبه کنیم.

هدف ما در این فصل ایجاد روشی منظم برای یافتن رفتار گذرای مدارها به کمک تبدیل لاپلاس است. روش پنج مرحله ای بر شمرده شده در بخش 15-7 اساس این بحث است. اولین گام در استفاده موثر از روش تبدیل لاپلاس از بین بردن ضرورت نوشتن معادلات انتگرالی –دیفرانسیلی توصیف کنندة مدار است. برای این منظور باید مدار هم از مدار را در حوزةs به دست آوریم. این امر به ما امکان می دهد که مداری بسازیم که مستقیماً در حوزة تحلیل شود بعد از فرمولبندی مدار در حوزة sمی توان از روشهای تحلیلی بدست آمده (نظیر روشهای ولتاژ گره، جریان خانه و ساده سازی مدار) استفاده کرد و معادلات جبری توصیف کنندة مدار را نوشت. از حل این معادلات جبری، جریانها و ولتاژهای مجهول به صورت توابعی گویا به دست می آیند که تبدیل عکس آنها را به کمک تجزیه به کسرهای ساده به دست می اوریم. سرانجام روابط حوزه زمانی را می آزماییم تا مطمئن شویم که جوابهای به دست امده با شرایط اولیة مفروض و مقادیر نهایی معلوم سازگارند.

در بخش 16-2- هم از عناصر را در حوزة s به دست می آوریم. در شروع تحلیل مدارهای حوزة s باید دانست که بعد ولتاژ تبدیل شده ولت ثانیه و بعد جریان تبدیل شده آمپر ثانیه است. بعد نسبت ولتاژ به جریان در حوزة s ولت بر آمپر است و بنابراین در حوزة s یکای پاگیرایی ( امپدانس) اهم و یکای گذارایی ( ادمیتانس) زیمنس یا مو است.

16-2- عناصر مدار در حوزة s

روش به دست آوردن مدار هم از عناصر مدار در حوزة s ساده است. نخست رابطة ولتاژ و جریان عنصر در پایانه هایش را در حوزه زمان می نویسم. سپس از این معادله تبدیل لاپلاس می گیریم به این طریق رابطة جبری میان ولتاژ و جریان در حوزة s به دست می آید. سرانجام مدلی می سازیم که رابطة میان جریان و ولتاژ در حوزة s را برآورد سازد. در تمام این مراحل قرارداد علامت منفی را به کار می بریم.

نخست از مقاومت شروع میکنیم، بنا به قانون اهم داریم

(16-1)                              

از آنجا که R ثابت است، تبدیل لاپلاس معادلة (16-1) چنین است .

(16-2)                           V=RI

که در آن

 

بنا به معادلة (16-2) مدار هم ارز یک مقاومت در حوزة s مقاومتی برابر R اهم است که جریان آن Iآمپر – ثانیه و ولتاژ آن V ولت –ثانیه است.

مدارهای مقاومت در حوزة زمان و حوزه بسامد در شکل 16-1 دیده می شود به یاد داشته باشید که در تبدیل مقاومت از حوزة زمان به حوزة بسامد تغییری در آن ایجاد نمی شود.

القاگری با جریان اولیة Io در شکل 16-2 آمده است. معادلة ولتاژ و جریان آن در حوزة زمان چنین است.

 

 

 

شکل 16-1- مقاومت در الف) حوزة زمان ،ب) حوزة بسامد.

   

 

 

 

 

 

شکل 16-2- القا گر L هانری با جریان اولیه Io آمپر.

در حوزة زمان چنین است

(16-3)                   

پس از تبدیل لاپلاس گرفتن از معادلة (16-3) داریم

(16-4)                   

                         

به کمک دو مدار مختلف می توان معادلة (16-4) را تحقق بخشید. مدار هم از اول مداری است متشکل از یک امپدانس sL اهمی که با یک منبع ولتاژ مستقل ‎LIo ولت ثانیه ای متوالی است. این مدار در شکل 16-3 دیده می شود در بررسی مدار هم ارز حوزة بسامدی شکل 16-3 توجه کنید که جهت ولتاژ منبع LIo بر مبنای علامت منفی مجود در معادله (16-4) است توجه به این نکته نیز اهمیت دارد که Io علامت جبری مخصوص به خود را دارد. یعنی چنانچه مقدار اولیة I خلاف جهت مبنای I باشد آنگاه Io مقدار منفی دارد.

مدار هم از دیگری که معادله (16-4) را برآورده، می سازد متشکل است از یک امپدانس

 

 

 

 

 

 

SL اهمی که با یک منبع جریان مستقل Io/s آمپر ثانیه ای موازی است. این مدار هم ارز در شکل 16-4 آمده است.

برای به دست آوردن مدار هم از شکل 16-4 راههای مختلفی موجود است. یکی از این راهها حل معادلة (16-4) نسبت به جریان I و ساخت مداری بر حسب معادلة به دست آمده بنابراین

(16-5)               

به سادگی مشاهده می شود که مدار شکل 16-4 معادلة (16-5) را برآورده می سازد دو راه دیگر به دست آوردن مدار شکل 16-4 عبارت اند از (1) به دست اوردن هم از نور تن مدار شکل (16-3، (2) به دست آوردن  جریان القا گر بر حسب ولتاژ آن و گرفتن تبدیل لاپلاس از معادلة به دست آمده این دو روش به صورت تمرین در مسائل 16-1 و 16-2 به خواننده واگذار می شود.

قابل توجه است که هرگاه انرژی اولیة ذخیره شده در القا گر صفر باشد یعنی اگر Io=o مدار هم ارز القا گر در حوزة بسامد به صورت القا گری با امپدانس sL اهم در می آید. این مدار در شکل 16-5 آمده است.

برای خازنهای با بار اولیه نیز دو مدار هم ارز در حوزة s وجود دارد. خازنی که با بار اولیة Vo ولت در شکل 16-6 دیده می شود. جریان خازن چنین است.

 

 

 

 

 

 

شکل 16-5 مدار خوزة بسامدی القاگری با جریان اولیه صفر.

 

 

 

 

شکل 16-6- خازنی C فارادی که تاVo ولت بار دار شده است.

(16-6)                   

پس از تبدیل معادلة (16-6) داریم

 

یا

(16-7)                    I=sCV-CVo

از معادله فوق دیده می شود که جریان I در حوزة بسامد از دو جریان شاخه ای تشکیل می شود یکی از شاخه ها از یک گذارایی به مقدار sc مو و دیگری از یک منبع جریان مستقل CVo آمپر ثانیه ای تشکیل  می شود. این مدار هم ارز در شکل 16-7 آمده است.

از حل معادلة (16-7) نسبت به V می توان مدار هم ارز متوالی خازن باردار را به دست آورد. بنابراین داریم

(16-8)                   

مداری که در شکل 16-8 آمده است تحقق معادلة (16-8) است.

در مدارهای هم ارز شکلهای 16-7 و 16-8، علامت جبری خود را دارد. یعنی اگر جهت  خلاف جهت مبنای  باشد  مقداری منفی خواهد بود. اگر ولتاژ اولیه خازن صفر باشد مدارهای هم ارز ساده می شوند و تنها امپدانس sc/1 اهمی باقی می ماند که در شکل 16-9 آمده است.

مدارهای حوزه بسامدی به دست آمده در این بخش در جدول 16-1 آمده اند. کاربرد این مدارها در بخش 16-4 نشان داده خواهد شد.

 

 

 

 

 

 

 

 

 

 

جدول 1016 مدارهای هم ارز در حوزة s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

شکل 16-9 مدار حوزة بسامدی خازنی با ولتاژ اولیة صفر

16-3- تحلیل مدار در حوزة s

پیش از بررسی مدارها در حوزة s به ذکر چند نکته می پردازیم که اساس تمام کارهای بعدی ماست.

نخست میدانیم که چنانچه در القا گر و خازنها انرژی اولیه نداشته باشیم رابطة ولتاژ و جریان آنها چنین است.

(16-9)            V=ZI

که در آن Z امپدانس (پاگیرایی) عنصر در حوزة s است. به این ترتیب امپدانس مقاومت R اهم، امپدانس القا گر sL اهم، و امپدانس خازن sC/1 اهم است. نکته ای که در معادلة (16-9) آمده است، در شکلهای 16-1(ب)، 16-5، و 16-9 مشخص شده است. گاه معادلة (16-9) را قانون اهم در حوزة s می نامند.

عکس پاگیرایی، گذارایی، گذاراییها در حوزة s دقیقاً همان قواعد ترکیب آنها در حوزة فازبرداری است. در تحلیل  حوزة بسامدی می توان از ساده کردنهای متوالی و موازی و تبدیلهای ستاره – مثلث استفاده کرد.

نکتة مهم دیگر این است که قوانین کبرشهف را می توان برای جریانها و ولتاژهای حوزة s به کار برد.


دانلود با لینک مستقیم


مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

مقاله درباره مزایا و کاربرد برقگیرها در خطوط انتقال فشار قوی

اختصاصی از یارا فایل مقاله درباره مزایا و کاربرد برقگیرها در خطوط انتقال فشار قوی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 41

 

مزایا و کاربرد برقگیرها در خطوط انتقال فشار قوی

مهندس محمد اسکویی

مرکز تحقیقات نیرو

اشاره:

در این مقاله استفاده از برقگیر آویزی به عنوان عامل حفاظتی در مقابل اصابت صاعقه انتقال و بالا بردن ضریب اطمینان شبکه تشریح شده است. در این راستا ساختمان داخلی و نحوه به کارگیری برقگیر آویزی در خطوط انتقال فشار قوی و تفاوتهای آن بر برقگیرهای متداول بیان شده است. در انتها، مدلی از شبکه با استفاده از نرم افزار ATP شبیه سازی و مورد مطالعه قرار گرفته و نتایج آن ارائه شده است.

ABSTRACT:

In order to increase the reliability of transmission lines against lightning strikes, application of arresters is the useful way. Lightning surges cause flashover on insulator string, especially in towers with high ground resistance. So a short circuit between line and tower will be app eared. If there is a arrester beside the insulator string, surge current will pass through the arrester to arrester to ground and there is not any flashover. Also in this paper the basic concepts and construction of transmission line arrester. Will be described. At the end of poper. Performance and application of arresters in line will be proved by results of simulating a line with EMTP.

1- مقدمه

استفاده از برقگیر در خطوط انتقال به منظور افزایش قابلیت اطمینان شبکه و کاهش خطاهای ناشی از اصابت صاعقه و همچنین حذف مطمئن اضافه ولتاژ ناشی از صاعقه، صورت می گیرد. اضافه ولتاژهای ایجاد شده در شبکه تاثیر مخربی بر تجهیزات و تاسیسات الکتریکی بر جای می گذارند، اما حدود آسیب با توجه به مقاومت عایقی وسیله الکتریکی متفاوت می باشد. اضافه ولتاژهای ناشی از صاعقه که به صورت استاندارد 50/2/1 میکروثانیه بیان می شوند به دلیل پشتیبانی موج تیز و دامنه بالایی ک دارای اثرات تخریبی شدیدی در شبکه بر جای می گذارند.

از جمله این آثار، می توان به سوختن تجهیزات فشار قوی و ایجاد خطای اتصال کوتاه در پستهای فشار قوی و یا شکست الکتریکی سطحی در طول زنجیر مقره و ایجاد خطای اتصال کوتاه در آن اشاره کرد. تمامی این موارد منجر به ایجاد خطا و قطع شبکه می گردد. برای پیشگیری از این نوع خطاها در پستهای فشار قوی روشهای متعددی وجود دارد که عملی‌ترین و اقتصادی‌ترین آنها استفاده از سیم محافظ و برقگیر است. از طرف دیگر در خطوط انتقال فشار قوی نیز روشهای متعددی برای جلوگیری از شکست الکتریکی زنجیر مقره در اثر اصابت ساعقه وجود دارد که به طور خلاصه می‌توان از سیم محافظ و کاهش مقاومت پای برج و افزایش سطح عایقی نام برد.

افزایش سطح عایقی در برجها، اگر چه از بروز شکست الکتریکی سطحی در زنجیر مقره جلوگیری می کند لیکن منجر به بزرگ شدن بازوها و ارتفاع برج و افزایش هزینه می گردد. از طرف دیگر، در مناطق سنگی و صخره ای که مقاومت زمین بالا است، مقاوت پای برج، بزرگ خواهد بود. در این صورت‌حتی اگر خط انتقال، توسط سیم زمین محافظت گردد، به دلیل بالا بودن مقاومت پای برج، در زمان اصابت صاعقه به برج، پتانسیل برج آنچنان بالا می رود که اختلاف آن با ولتاژ خط، از سطح عایقی مقره فراتر می رود و بنابراین شکست الکتریکی سطحی در زنجیر مقره روی داده و در صورت تداوم قوس الکتریکی، خط انتقال توسط کلیدهای قدرت قطع می‌گردد. بدین لحاظ در صورتی که بتوان با بکارگیری الکترودهای زمین در عمق زیاد و یا روشهای دیگر، مقاومت پای برج را کاهش داد، پدیده اخیر و یا قوس برگشتی روی نخواهد داد. ولی در مواردی مانند سخت بودن یا سنگی بودن زمین در کوههای مرتفع، این امکان وجود ندارد و تاثیر روشهای ذکر شده در عمل کم می باشد.

بنابراین استفاده از برقگیر برای کاهش خطاهای ناشی از شکست الکتریکی سطحی زنجیر مقره در اینگونه موارد بیشتر مورد توجه قرار می گیرد. بکارگیری برقگیر در خطوط انتقال در چنین شرایطی درصد خطاهای ناشی از اصابت صاعقه به خط انتقال را به طور چشمگیری کاهش می دهد این امر به مفهوم افزایش قابلیت اطمینان که حذف مطمئن اضافه ولتاژهای حاصل از صاعقه و شدن خسارتهای مالی ناشی از قطع شبکه و تخریب تجهیزات می باشد.

2- ویژگیهای برقگیرهای خطوط انتقال

اساس کار و ساختمان برقگیرهای خطوط انتقال از برقگیرهای پستهای فشار قوی الهام گرفته شده است. اما تفاوتهایی نیز وجود دارد. به طور خلاصه، برقگیرهای متداولی که در پستهای فشار قوی به کار می رود. شامل برقگیرهای میله ای، انفجاری، فاصله هوایی‌کنترل کننده، کربورسیلیسیمی‌و اکسید فلزی می‌گردند. برقگیرهای یادشده، می توانند ترکیبی از یک یا چند جزء اساسی ساختمان برقگیر شامل محفظه، قسمت فعال شونده، (مانند مقاومت غیرخطی) و فاصله هوایی باشند. مشخصات هر یک از این برقگیرها در جدول خلاصه شده است.

با توجه به خواص ذکر شده برای برقگیرهای متداول، برقگیرهای خطوط انتقال، باید شرایط زیر را داشته باشند:

الف) قبل از فعال شدن کلیدهای فشارقوی، جریان پیرو را قطع کنند.

ب) حتی در شرایطی که برقگیر نتواند صحیح عمل کند، مانع بازبست مدار نشوند.

پ) در صورت عبور جریان صاعقه بیش از مقدار نامی، منفجر نشوند.

ت) از لحاظ فیزیکی کوچک و سبک باشند بطوری که بتوان آنها را در خطوط انتقال موجود، بدون تغییر دادن


دانلود با لینک مستقیم


مقاله درباره مزایا و کاربرد برقگیرها در خطوط انتقال فشار قوی

تحقیق درباره کاربرد نانو مواد در صنعت بتن 17 ص

اختصاصی از یارا فایل تحقیق درباره کاربرد نانو مواد در صنعت بتن 17 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 17

 

کاربرد نانو مواد در صنعت بتن

مقدمه

مواد نانو به عنوان موادی که حداقل یکی از ابعاد آن (طول، عرض، ضحامت) زیر 100nm باشد تعریف شده اند، یک نانومتر یک هزارم میکرون یا حدود 100000برابر کوچکتر از موی انسان است. به طور کلی، در یک تقسیم‌بندی عمومی، محصولات نانومواد را می توان به صورت‌های زیر بیان کرد:

فیلم‌های نانو لایه (Nano Layer Thin Films) ) برای کاربردهای عمدتا الکترونیکی، نانو پوشش های حفاظتی برای افزایش مقاومت در برابر خوردگی، حفاظت در مقابل عوامل مخرب محیطی و نانو ذرات به عنوان پیش سازنده(precursor ) یا اصلاح ساز(Modifier ) پدیده‌های شیمیایی و فیزیکی. منظور از یک ساختار (Nanostructured Solid ) یا واضح تر یک بدنه نانوساختار جامدی است که در آن انتظام اتمی، اندازه کریستال های تشکیل دهنده و ترکیب شیمیایی سراسر بدنه در مقیاس چند نانو متری گسترده شده باشد.

خواص فیزیکی و شیمیایی مواد نانو (در شکل و فرم‌های متعددی که وجود دارند از جمله ذرات، الیاف، گلوله و...)در مقایسه با مواد میکروسکوپی تفاوت اساسی دارند. تغییرات اصولی که وجود دارد نه تنها از نظر کوچکی‌ای اندازه بلکه از نظر خواص جدید آنها در سطح مقیاس نانو می‌باشد.

هدف نهایی از بررسی مواد در مقیاس نانو، یافتن طبقه جدیدی از مصالح ساختمانی باعملکرد بالا می باشد، که آنها را می توان به عنوان مصالحی با عملکرد بالا و چند منظوره به شمار آورد. منظور از عملکرد چند منظوره، ظهور خواص جدید و متفاوت نسبت به مواد معمولی می‌باشد به گونه‌ای که مصالح بتوانند کاربردهای گوناگونی را ارائه نمایند.

1- مواد نانو کامپوزیت

مواد نانو کمپوزیت بر پایه پلیمر (ماتریس پلیمری) اولین بار در سال‌های 70 معرفی شده اند که از فناوری sol-gel جهت انتشار (Disperse ) دادن ذرات نانو کانی درون ماتریس پلیمر استفاده شده است.

هر چند تحقیقات انجام شده در دو دهه گذشته برای توسعه تجاری این مواد توسط شرکت تویوتا در ژاپن صورت گرفته است، ولی رشته نانو کمپوزیت پلیمر هنوز در مرحله  جنینی و در آغاز راه می‌باشد. در این شرایط نانو آلومینا، بهترین ساختار نانویی است که افق جدیدی را در صنعت سرامیک‌ نوید می دهد، زیرا کاربرد این مواد پدیده ای است که از نظر مکانیکی، الکتریکی و خواص حرارتی به طور مناسب دارای تعادل بوده و در رشته های مختلف کاربرد دارد. از جمله می‌توان به چند نمونه اشاره کرد: تکنولوژی نانو فلز آرتوناید که اخیرا الیاف تجاری نانو آلومینا  را تولید کرده است و ذرات نانویی غیر فلز مانند: نانوسیلیکا، نانو زیرگونیا و مواد دیگر اصلاح کننده سرامیک ها.

2- بتن با عملکرد بالا

یکی از چالش‌هایی که در رشته مصالح ساختمانی بوجود آمده است، بتن با عملکرد بالا (HPC) می باشد. این نوع بتن مقاوم از نوع مصالح کامپوزیت بوده و از نظر دوام جزو مصالح کامپوزیت و چند فازی مرکب و پیچیده می باشد. خواص، رفتار و عملکرد بتن بستگی به نانو ساختار ماده زمینه بتن و سیمانی دارد که چسبندگی، پیوستگی و یکپارچگی را بوجود می آورد.

بنابراین، مطالعات بتن و خمیر سیمان در مقیاس نانو برای توسعه مصالح ساختمانی جدید و کاربرد آنها اهمیت دارد.روش معمولی برای توسعه بتن با عملکرد بالا اغلب شامل پارامترهای مختلفی از جمله طرح اختلاط بتن معمولی و بتن مسلح با انواع مختلف الیاف می‌باشد. در مورد بتن به طور خاص، علاوه بر عملکرد با دوام و خواص مکانیکی بهتر، بتن با عملکرد بالای چند منظوره (MHPC) خواص اضافه دیگری را دارا می‌باشد، از جمله می‌توان به خاصیت الکترو مغناطیسی و قابلیت بکار گیری در سازه های اتمی (محافظت از تشعشعات) و افزایش موثر بودن آن در حفظ انرژی ساختمان‌ها و ... را نام برد.

3- نانو سیلیس آمورف

در صنعت بتن، سیلیس یکی از معروفترین موادی است که نقش مهمی در چسبندگی و پر کنندگی بتن با عملکرد بالا (HPC) ایفا می کند.

محصول معمولی همان سلیکیافیوم یا میکرو سیلیکا می‌باشد که دارای قطری در حدود0.1 تا 1 میلیمتر بوده و دارای اکسید سیلیس حدود 90% می‌باشد. می‌توان گفت که میکروسیلیکا محصولی است که برای افزایش عملکرد کامپوزیت مواد سیمانی به کار برده می‌شود.

محصولات نانو سیلیس متشکل از ذراتی هستند که دارای گوله‌ای شکل بوده و با قطر کمتر از 100nm یا بصورت ذرات خشک پودر یا به صورت معلق در مایع محلول قابل انتشار می‌باشند، که مایع آن معمول‌ترین نوع محلول نانوسیلیس می باشد، این نوع محلول آزمایشات مشخص در بتن خود تراکم ([2] SCC ) به کار گرفته شده است. نانو سیلیس معلق کاربردهای چند منظوره از خود نشان می دهد مانند:

خاصیت ضد سایش

ضد لغزش

ضد حریق

ضد انعکاس سطوح

آزمایشات نشان داده‌اند که واکنش مواد نانو سیلیس (Colloidal Silica) با هیدرواکسید کلسیم در مقایسه با میکروسیلیکا سریع‌تر انجام گرفته و مقدار بسیار کم این مواد همان تاثیر پوزالانی مقدار بسیار بالای میکروسیلیکا را در سنین اولیه دارا می باشد. تمام کارهای انجام یافته بر روی کاربرد مواد نانو سیلیس کلوئیدی (Colloidal Nano Silica )در بخش اصلاح مواد ریولوژی، کارپذیری و مکانیکی خمیر سیمان بوده است. آنچه که در اینجا مطرح است نتایج اولیه محصولات نانو سیلیس با قطری در محدوده 5 تا 100nm  می‌باشد.

4- نانو لوله‌ها (NANOTUBES)

همان گونه که در مقدمه مقاله مطرح شد معمولا الیاف برای مسلح کردن و اصلاح عملکرد مکانیکی بتن بکاربرده می شوند. امروزه از الیاف فلزی، شیشه‌ای، پلی پرویلین، کربن و ... در بتن برای مسلح کردن استفاده می شود و لیکن تحقیقات روی بتن مسلح شده توسط نانو لوله‌ کربنی (Carbon Nan otubes


دانلود با لینک مستقیم


تحقیق درباره کاربرد نانو مواد در صنعت بتن 17 ص