یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

تحقیق و بررسی در مورد بررسی آشکار سازی بن بست در سیستم عامل توزیع شده

اختصاصی از یارا فایل تحقیق و بررسی در مورد بررسی آشکار سازی بن بست در سیستم عامل توزیع شده دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 22

 

بررسی آشکار سازی بن بست در سیستم عامل توزیع شده

چکیده

آشکار سازی بن بست یکی از جدی ترین مسائل در سیستم عامل‌‌های توزیع شده است. در این مقاله ما یک بررسی وضعیت هنری الگوریتم‌های آشکار سازی بن بست توزیع شده که در ادبیات مطرح شده است ارائه می کنیم. در این حوزه ما یک نگاهی به مقالات آشنا درباره این عنوان داریم و تلاش می کنیم تا معروف ترین الگوریتم‌ ها را گروه بندی می کنیم.

1- مقدمه

در طول دهه گذشته سیستمهای محاسبه گر پیشرفت سریعی داشته اند که تأثیر زیادی بر سیستم عاملهای توزیع شده دارد. در حالیکه سیستم‌های تجاری به تدریج پیشرفت می کنند، چالشهای جدید بوسیله ارتباط گسترده جهانی سیستم‌های کامپیوتری وضع شده است.

این جریان یک نیاز رشد کننده‌‌ای برای راه حلهای توزیع شده با مقیاس بالا ایجاد می‌کند. در آینده، سیستم عاملهای توزیع شده باید صدها و حتی هزاران سایت و میلیونها مراجع را حمایت کنند و بنابراین با چالشهای بزرگی در ارتباط با اجرا، در دسترس بودن و مدیریت مواجه خواهند شد. یکی از چالشهایی که ما باید حل کنیم در این حوزه مشکل بن بست است. همچنین نسبت یکی از جدی ترین مشکلات در سیستم‌ های برنامه ریزی رایج چند کاره است.

بقیه مقاله مثل زیر سازمان دهی شد. بخش 2 مختصرا بن بست و حوزه آن در سیستم عاملهای توزیع شده را توزیع می دهد.

در حالیکه بخش 3 یک شرحی از مشکل بن بست ارائه می دهد و 2 الگوی بن بست که به طور کلی در سیستم‌های بانک اطلاعاتی توزیع شده به کار می رود. یک گروه بندی از الگوریتم‌‌های توزیع شده برای این الگوها و نماینده‌های گروه های مختلف در بخش 4 شرح داده شده است. نهایتا، ما در بخش 5 خلاصه می کنیم، در حالیکه بخش 6 مرجهای ما را توصیف می کند.

2- پیش زمینه

در این بخش ما تلاش می کنیم تا نگاهی بر مقالات بررسی که بوسیله دیگران در روش آشکار سازی بن بست ارائه شده است داشته باشیم.

متون بن بست رسما یک بن بست را به عنوان یک مجموعه فرایندی که بن بست است، اگر هر فرایند در مجموعه منتظر یک رویدادی است که تنها فرایند دیگری در مجموعه می تواند موجب شود. تعریف می کند. [2 و 1]. یک تعریف غیررسمی تر این است که بن بست‌ها می تواند هر زمانی که 2 یا چند فرایند برای منابع محدودی رقابت می کنند و فرایندها برای یافتن و حفظ یک منبع فراهم شده است اتفاق بیافتد. اگر یک فرایند برای منبعی، انتظار بکشد، هر منبعی که آن حفظ برای فرایندهای دیگر در دسترس نیستند. اگر فرایندی برای منبعی که بوسیله فرایند دیگری حفظ شده است انتظار می‌کشد، که در بازکش در حال انتظار برای یکی از منابع نگهداری آن ما یک بنسبت داریم. هنگامیکه یک سیستم به این وضعیت می رسد، به طور مؤثر، بسته می شود: و باید مشکل را برای ادامه عملکرد حل کنیم.

4 شرط وجود دارد که یک بن بست نیاز دارد:

1- حذف متقابل: هر منبعی می تواند به یک منبع خاص تخصیص یافته شود.

2- حفظ و انتظار: فرایندها می توانند یک منبع و درخواست بیشتر حفظ کنند.

3- بدون پریامپشن: منابع نمی توانند بالاجبار از یک فرایند حذف شوند.

4- انتظار حلقوی: باید یک زنجیره حلقوی از فرایند وجود داشته باشد هر انتظاری برای یک منبع نه بوسیله شماری از زنجیره‌های بعدی نزدیک حفظ شده است.

به طور معمول 4 روش در ارتباط با بن بستها به کاربرده شده است

1- نادیده گرفتن مشکل

2- آشکار سازی بن بست

3- جلوگیری از بن بست

4- اجتناب از بن بست

نادیده گرفتن بن بستها آسانترین برنامه برای تکمیل است. آشکار سازی بن بست تلاش می کند تا بن بست ها را قرار دهد و حل کند. اجتناب از بن بست روشهایی را شرح می دهد که تلاش می کند تا تعیین کند آیا یک بنبست در زمانی که یک منبع درخواست می شود و نسبت به درخواستی در یک حالتی که از بن بست اجتناب می‌شود عکس عمل نشان می دهد. اتفاق خواهد افتاد. جلوگیری از بن بست ساختن یک سیستمی در یک حالتی که یکی از 4 شرط ضروری برای بن بست امکان پذیر نباشد است. هر گروه راه حل متناسب با یک نوع خاص محیط است و فواید و نقایص دارد. در این مقاله ما به آشکار سازی بن بست که شایع ترین راه حل بن بست تکمیل شده است تمرکز می کنیم.

در سیستم‌های بانک‌ها اطلاعاتی توزیع شده، آشکار سازی بن بست خیلی پیچیده می‌شود به عنوان یک نتیجه‌ای از بی ثباتی در وضعیت سیستم جهانی. اگر چه الگوریتم‌های آشکار سازی بن بست زیادی در سیستم های بانک اطلاعاتی توزیع شده مطرح شده است اکثر آنها به خاطر سربارهای سیستم بالا غیر عمل هستند. 2 روش اصلی در آشکار سازی بن بست توزیع شده شکل گرفته است. ابتدا یکی که برای ساخت وضعیت یک سیستم جهانی است و دومی برای تلاش در جهت عبور از یک پیغام خاص از طریق ترانکش‌ های بلوکه شده به منظور آشنا ساختن یک چرخه بن بست است. یک روش از روش دومی آشکار سازی بن بست توزیع شده بر پایه دلیل همان طور که توسط چندی و مسیرا و هس مطرح شده است. ترکیب اصلی این متد این است که هیچ وضعیت سیستم جهانی مورد نیاز نیست.


دانلود با لینک مستقیم


تحقیق و بررسی در مورد بررسی آشکار سازی بن بست در سیستم عامل توزیع شده

دانلود مقاله کامل درباره آشکار ساز

اختصاصی از یارا فایل دانلود مقاله کامل درباره آشکار ساز دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 3

 

آرایه آشکار ساز:اسکنرهای CTاولیه دارای یک آشکار ساز بودند.اسکنرهای CT پیشرفته دارای یک آرایه چندتایی از آشکار ساز هستندکه تعداد این آشکار سازها ممکن است به 8000  عدد برسد این اشکارسازها به دو دسته تقسیم بندی می شوند آشکارسازهای scintillation و آشکار سازهای gas-filled.

  Scintillation detectors:این نوع آشکار ساز در ابتدا دارای چندین scintillation crystal-photomultiplier tube بودند این آشکار سازها قابلیت در کنارهم قرار گرفتن به صورت یک بسته فشرده را نداشتند و برای هر    photomultiplier tube یک منبع تغذیه جدا لازم بود. بنابراین این اشکار سازی با مجموعه های scintillation crystal-photomultiplier جایگزین شدند.دیودهای نوری نور رابه یک سیگنال الکتریکی تبدیل می کنند ودارای حجم کوچکتر وقیمت کمتری هستند ونیاز به منبع تغذیه جدا ندارند و نسبت به یکدیگر آشکار سازهای آن دارای بازدهی نسبتا یکسانی هستند.در اسکنرهای اولیه کریستالی از جنس NaI مورد استفاده قرار می گرفت این ماده به سرعت با ماده از جنس BgO و CsI جایگزین گشت. هم اکنون کریستالی هایی از جنس CdWO4  و سرامیک های خاص استفاده می گردد. فاصله بین این اشکارسازها بسته به نوع طراحی تغییر می کند، ولی به طور کلی از یک تا هشت اشکار ساز در هر سانتی متر یا یک تا پنج آشکار ساز درهر درجه وجود دارد. تمرکز scintillation detector یکی از مشخصات مهم اسکنرهایCT  می¬باشد که بر روی قدرت تفکیک فضایی سیستم تاثیر می گذارد. آشکار سازها ممکن است  %50 باشد،پس تقریباً %50 از پرتوها بدون دخالت در تشکیل تصویر و سبب افزایش دوز بیمار می شوند.

Gas-filled detector:این آشکار سازها نیز در اسکنرها مورد استفاده قرار میگیرند. این اشکار سازها از یک محفظه بزرگ فلزی ساخته می شوند و درون انها بوسیله صفحاتی که به فاصله یک میلی متر از هم قرار دارند تقسیم بندی میگردد. این صفحات همانند نوارهای گرید هستند و محفظه بزرگ را به محفظه های کوچک تقسیم می کند. هر محفظه کوچک همانند یک اشکار ساز پرتو مجزا عمل می کند. کل آرایه آشکار ساز برای جلوگیری از ورود یا خروج هوا کاملا عایق می گردد و سپس با یک گاز خنثی که دارای عدد اتمی بالایی است تحت فشار پر می گردد. یونیزه شدن گاز در هر محفظه متناسب با پرتوهای برخودی به محفظه است و تا حد زیادی شبیه به آشکار ساز اید ه ال پرتوهای برخوردی را آشکار ساز می سازد. بازده ذاتی آشکار سازی یک آشکار ساز gas-filled فقط در حدود 45% است. به هر حال می توان فاصله بین آشکار سازها را تاحدی کاهش داد که فقط مساحت کمی آرایه آشکار ساز مورد استفاده نباشد. بازدهی هندسی در شکل نشان داده شده است که یک مقایسه بین آشکار ساز و آشکار ساز gas-filled است. در نتیجه بازدهی کل آشکار سازی برای یک آرایه آشکار ساز gas-filled مثل ارایه آشکار ساز scintillation در حدود 45% است همچنین دوز بیمار برای آرایه های اشکار ساز gas-filled و  scintillationتقریبا یکسان است.


دانلود با لینک مستقیم


دانلود مقاله کامل درباره آشکار ساز

آشکار سازی اطلاعات بد و تعیین هویت 41 ص

اختصاصی از یارا فایل آشکار سازی اطلاعات بد و تعیین هویت 41 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 43

 

فصل 5- آشکارسازی اطلاعات بد و تعیین هویت

یکی از کارهای اساسی یک برآورد کننده عبارت اند از تعیین خطاهای اندازه گیری و تعیین و حذف آنها است اگر ممکن باشد، اندازه گیری ها ممکن است حاوی خطاهای ناشی از دلایل مختلف باشد. خطاهای تصادفی معمولاً در سنجش های ناشی از دقت محدود مترها و وسایل ارتباطات وجود دارند. اگر redundancy زائده های کافی در بین سنجش ها وجود داشته باشد، چنین خطاهایی توسط برآورد کننده حالت، فیلترمی شود. طبیعت این عمل فیلتر کردن بستگی به روش برآورد بکار رفته دارد. خطاهای اندازه گیری بزرگ می توانند وقتی رخ دهند که مترها دارای بایاس ها، یا اتصالات (یا ارتباطات) غلط باشد. خرابی های سیستم ارتباطات از راه دور یا نویز ایجاد شده توسط تداخل پیش بینی نشده نیز منجر به انحرافات زیاد در سنجش های ثبت شده می شود. قطع نظر از این موارد، یک برآورد کننده ممکن است با اطلاعات توپولوژیک غیرصحیح فریب داده شود که بعداً بصورت اطلاعات بد توسط برآورد کننده تفسیر می شود. چنین موقعیتهایی (حالتهایی) به سختی کنترل می شوند و برطرف کردن خطاهای توپولوژی بعدا در فصل 7 بحث می شوند. بعضی اطلاعات بد آشکار هستند و می توانند توسط کنترل های ساده، آشکار شده یا حذف شوند. اندازه گیری مقادیر ولتاژ منفی از اندازه گیری بزرگتر یا کوچکتر از مقادیر پیش بینی شده اند از آن جمله است. یا تفاوت های زیاد جریانهای ورودی و خروجی در یک گره ارتباطی در یک ایستگاه فرعی از جمله مثالهای چنین اطلاعات بد می باشند. متأسفانه تمام انواع اطلاعات بد به آسانی قابل آشکار شدن توسط این دستگاه ها نمی باشند. بنابراین، برآورد کننده های حالت باید مجهز به ویژگی های پیشرفته تری باشند که آشکارسازی و تعیین هویت هر نوع از اطلاعات بد را آسان می کند. عملیات اطلاعات بد بستگی به روش برآورد حالت بکار رفته در اجرا دارد. این فصل بر روی آشکار سازی اطلاعات بد و روش های تعیین هویت تمرکز دارد که با روش WLS مرتبط هستند. سایر روش های برآورد حالت از قبیل روش هایی که در فصل 6 بحث می شوند، پردازش اطلاعات بد را بصورت روش برآورد کننده حالت ترکیب می کند و بنابراین بحث آنها شامل جنبه های عملیات اطلاعات بد نیز می باشد هنگام استفاده از روش برآورد WLS، آشکار سازی و تعیین هویت اطلاعات بد فقط پس از فرایند برآورد توسط پردازش باقیمانده های اندازه گیری انجام می شوند. تحلیل بر اساس خواص این باقیمانده ها است که شامل توزیع احتمالات پیش بینی شده آنها می باشد. اطلاعات بد ممکن است به راههای مختلفی ظاهر شود که بستگی به نوع، محل و تعداد اندازه گیری هایی دارد که در خطا هستند. آنها می توانند به این شرح طبقه بندی شوند :

اطلاعات بد واحد : فقط یکی از سنجش ها در کل سیستم دارای یک خطای بزرگ است.

اطلاعات بد چندگانه : بیش از یک اندازه گیری در خطا خواهد بود.

اطلاعات بد چندگانه ممکن است در سنجش هایی ظاهر شود که باقیمانده های آنها بطور قوی یا ضعیف مرتبط هستند، سنجش های مرتبط بطور قوی آنهایی هستند که خطاهای آنها بر روی مقدار برآورد شده از یکدیگر تاثیر زیادی می گذارند و باعث می شوند که مورد خوبی در خطا ظاهر شود هنگامی که سایر موارد حاوی یک خطای بزرگ باشد. برآوردهای اندازه گیری ها با باقیمانده های مرتبط تحت تاثیر خطاهای یکدیگر نمی باشند، وقتی که باقیمانده های اندازه گیری قویاً مرتبط باشند، خطاهای آنها ممکن است برابر باشند، خطاهای انطباقی / خطاهایی هستند که با یکدیگر بطور منطقی و سازگار ظاهر می شوند. اطلاعات بد چندگانه می توانند بعداً به یکی از این سه گروه طبقه بندی شوند :

اطلاعات بد غیر- تراکنشی چندگانه : اطلاعات بد در سنجش های دارای بقایای اندازه گیری مرتبط ضعیف

اطلاعات بد غیر- انطباقی ولی تراکنشی چندگانه : اطلاعات بد غیر انطباقی در سنجش ها با بقایای مرتبط قوی.

اطلاعات بد انطباقی و تراکنشی چندگانه : اطلاعات بد سازگار در سنجش های با بقایای مرتبط قوی.

تعیین مقدار تراکنش بین سنجش ها و تحلیل خطاها می توانند براساس حساسیت های بقایای اندازه گیری برای خطاهای اندازه گیری انجام شوند. خواص بقایای اندازه گیری ای که توسط روش برآورد حالت 6 ساله بدست می آیند از قبل برای این منظور، بازنگری می شوند. عملیات اطلاعات بد بستگی به روش برآورد حالت بکار رفته در اجرا دارد. این فصل برروی آشکار سازی اطلاعات بدو روش های تعیین هویت های تمرکز دارد که با روش WLS بکار رفته متداول مرتبط است، سایر روش های برآورد حالت از قبیل مواردی که در فصل 6 بحث می شوند، پردازش اطلاعات بد را بصورت بخشی از روش برآورد حالت ترکیب می شوند و بحث آنها شاملجنبه های عملیات آنها بر روی اطلاعات بد نیز می باشد. هنگام استفاده از روش برآورد WLS ،


دانلود با لینک مستقیم


آشکار سازی اطلاعات بد و تعیین هویت 41 ص

مقاله بررسی آشکار سازی بن بست در سیستم عامل توزیع شده

اختصاصی از یارا فایل مقاله بررسی آشکار سازی بن بست در سیستم عامل توزیع شده دانلود با لینک مستقیم و پر سرعت .

مقاله بررسی آشکار سازی بن بست در سیستم عامل توزیع شده


 مقاله بررسی آشکار سازی بن بست در سیستم عامل توزیع  شده

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:21

.چکیده

آشکار سازی بن بست یکی از جدی ترین مسائل در سیستم عامل‌‌های توزیع شده است. در این مقاله ما یک بررسی وضعیت هنری الگوریتم‌های آشکار سازی بن بست توزیع شده که در ادبیات مطرح شده است ارائه می کنیم. در این حوزه ما یک نگاهی به مقالات آشنا درباره این عنوان داریم و تلاش می کنیم تا معروف ترین الگوریتم‌ ها را گروه بندی می کنیم.

1- مقدمه

در طول دهه گذشته سیستمهای محاسبه گر پیشرفت سریعی داشته اند که تأثیر زیادی بر سیستم عاملهای توزیع شده دارد. در حالیکه سیستم‌های تجاری به تدریج پیشرفت می کنند، چالشهای  جدید بوسیله ارتباط گسترده جهانی سیستم‌های کامپیوتری وضع شده است.

این جریان یک نیاز رشد کننده‌‌ای برای راه حلهای توزیع شده با مقیاس بالا ایجاد می‌کند. در آینده، سیستم عاملهای توزیع شده باید صدها و حتی هزاران سایت و میلیونها مراجع را حمایت کنند و بنابراین با چالشهای بزرگی در ارتباط با اجرا، در دسترس بودن و مدیریت مواجه خواهند شد. یکی از چالشهایی که ما باید حل کنیم در این حوزه مشکل بن بست است. همچنین نسبت یکی از جدی ترین مشکلات در سیستم‌ های برنامه ریزی رایج چند کاره است.

بقیه مقاله مثل زیر سازمان دهی شد. بخش 2 مختصرا بن بست و حوزه آن در سیستم عاملهای توزیع شده را توزیع می دهد.


دانلود با لینک مستقیم


مقاله بررسی آشکار سازی بن بست در سیستم عامل توزیع شده

دانلود مقاله کامل درباره «توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی»

اختصاصی از یارا فایل دانلود مقاله کامل درباره «توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی» دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

«توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی»

آشکار سازی های نیمه هادی نوترون برای رادیوبیولوژی نوترون و شمارش آن دارای اهمیت بسیار زیادی هستند. آشکار سازی های ساده سیلیکونی نوترون ترکیبی از یک دیود صفحه ای با لایه ای از یک مبدل مناسب نوترون مثل 6LiFمی باشند. چنین وسایلی دارای بهره آشکار سازی محدودی می باشندکه معمولاً بیشتر از 5% نیست. بهره آشکار سازی را می توان با ساخت یک ساختار میکرونی3D به صورت فرو رفتگی، حفره یا سوراخ و پر کردن آن با ماده مبدل نوترون افزایش داد. اولین نتایج ساخت چنین وسیله ای در این مقاله ارائه شده است.

آشکار سازهای سیلیکونیN با حفره های هرمی شکل در سطح پوشیده شده با 6LiF ساخته شده و سپس تحت تابش نوترونهای حرارتی قرار گرفتند. طیف ارتفاع پالس انرژی تابش شده به حجم حساس با شبیه سازی مورد مقایسه قرار گرفت. بهره آشکار سازی این وسیله در حدود 6.3% بود. نمونه هایی با سایز ستونهای مختلف ساخته شد تا خواص الکتریکی ساختارهای سه بعدی مورد مطالعه قرار گیرد.ضرایب جمع آوری بار در ستونهای سیلیکون از 10تا800 nm عرض و 80تا nm 200ارتفاع با ذرات آلفا اندازه گیری شد. بهره آشکار سازی یک ساختار 3D کامل نیز شبیه سازی شد. نتایج نشان از تقویت بهره آشکار سازی با فاکتور 6در مقایسه با آشکار سازهای صفحه ای استاندارد نوترون دارد.

1. مقدمه و اهداف: آشکار سازهای نوترونی نمی توانند مستقیماً برای آشکار سازی نوترونهای حرارتی به کار روند و باید از ماده ای استفاده کرد که نوترونها را به صورت تشعشع قابل آشکار سازی در آورد. مواد مختلفی برای این منظور وجود دارند که در بین آنها6Li از همه مناسب تر به نظر می رسد. واکنش گیر افتادن نوترون در6Li دارای سطح مقطع942 b در انرژی نوترونی0.0253eV است.

6Li+n→∝(2.05MeV) +3H(2.73MeV

مواد مبدل با پایه6Li دارای سطح مقطع گیر انداختن نورونهای بالایی بوده و انرژی محصولات تولید شده آن نیز برای آشکار شدن به قدر کافی بالا می باشد. هدف نهایی آشکار سازR&D که در اینجا شرح داده می شوند ایجاد یک سنسور تصویر برداری نوترون با حساسیت بالا و قدرت تفکیک فضایی مناسب است. ما قبلاً با موفقیت چیپMedipix-2 با چیپ سنسور صفحه ای پوشیده با مبدل نوترون6Li را آزمایش کرده ایم. قدرت تفکیک فضایی چنین وسیله ای در حدود 65nm(نشانه ای از FWHMتابع پخش خطی) به خوبی با ابزارهای تصویر برداری نوترون قابل رقابت است. نسبت سیگنال به نویز(SNR) آشکارسازی سیلیکون نیز بالاتر از آشکار سازهای نوترونی فعلی است. با این وجود بهره آشکار سازی چنین آشکارسازهای نیمه هادی صفحه ای(نسبت تعداد آشکار شده به تعداد نوترون برخوردی) در حدود5% محدود می باشد. بهره آشکارسازی را می توان با ایجاد حفره یا سوراخ هایی (ساختار 3D ) در بدنه آشکار ساز سیلیکون افزایش داد.

2. آشکار سازی آشکارسازهای نوترونی صفحه ای:

برای پیش بینی بهره آشکارسازی ساختار صفحه ای از یک بسته نرم افزار شبیه سازی مونت کارلو استفاده شد. این بسته ترکیبی بود ازMCNP-4C (شبیه سازی انتقال نوترونی) با SRIM/TRIM (قدرت توقف) و کد مونت کارلو C++ متعلق به خودمان(شبیه سازی انتقال انرژی، طیف ارتفاع پالس، بهره آشکار سازی و....)

شکل 1بهره آشکار سازی را در مقابل ضخامت ماده مبدل6LIF (6LI غنی شده تا 89%)، اول برای تشعشع قدامی که منحنی مقدار بیشینه 4.48% را در ضخامت 7mg/cm2 نشان می دهد. بهره آشکار سازی در ضخامتهای بیشتر از این حد کاهش می یابد چون ذرات آلفا و تریتیوم تولید شده در سطوح دورتر LiFاز مرز Si-LiF قادر به رسیدن به حجم حساس نیستند. به علاوه تعداد بیشتر نوترونها در نزدیکی سطح خارجی مبدل جذب می شوند(شکل 2a را ببینید). منحنی دوم در شکل1 مخصوص آشکار سازی است که از پشت تحت تابش قرار گرفته است.

در ضخامتهای بالا تراز7mg/cm2، بهره آشکار سازی در حدود 4.90%ثابت باقی می ماند. نوترونها به صورت قابل ترجیحی در نزدیکی مرز مبدل نیمه هادی جذب می شوند )شکل(b.2 و بهره آشکارسازی اشباع شده و مستقل از ضخامت آشکار ساز می باشد.

طیف انرژی تابشی در آشکار ساز صفحه ای ساده اندازه گیری شد(شکل 3). نمونه مورد استفاده یک آشکارساز سیلیکونی 5×5mm2و 300µm ضخامت بود. مقاومت حجم n-type در حدود 5kΩcm بود. بخشی از نمونه با لایه ای از6LiF با 89% لیتیوم پوشانده شده بود(به این دلیل فقط بخشی از آن پوشانده شده بود تا بخشی به صورت فضای باز برای کالیبراسیون انرژی با ذرات آلفای منبع کالیبراسیون در اختیار داشته باشیم). طیف حاصل را با نتایج شبیه سازی مونت کارلو مقایسه کردیم. شبیه سازی به خوبی با نتایج اندازه گیری شده مطابقت داشت. نمونه از پشت با دسته پرتو نوترون حرارتی مورد تابش قرار گرفت. اندازه گیریها در کانال افقی (هدایت نوترون) راکتور تحقیقاتی هسته ای LVR-15 در موسسه فیزیک هسته ای دانشگاه چک در Rez در نزدیکی پراگ انجام پذیرفتند. فلوی نوترون در حدود106cm-2s-1در قدرت راکتور8MW بودند.

آلفا و تریتون تولید شده از واکنش گیر انداختن نوترون حرارتی اغلب در جهتهای متضاد به حرکت در می آیند (شکل4) آشکارساز صفحه ای ساده یکی از دو ذره الفا یا تریتون را آشکار می کند نه هر دو را. بنابر این طیف انرژی تابشی هرگز دارای انرژی بالاتر مربوط به تریتون نخواهد بود.

3. بهره آشکارسازی آشکارسازهای دارای حفره هرمی:

نمونه آزمایشی دوم دارای آرایه ای از حفره های هرمی معکوس ایجاد شده بوسیله قلم زنی سیلیکون با KoH بودپایه هرم به ابعاد 60×60 µm2 و به عمق 28mm فاصله بین هرم ها نیز23µm بود. اندازه چیپ مجدداً 5×5mm2 با ضخامت300µm و مقاومت در حدود5kΩcm بود. حفره ها دارای دو سطح بین مبدل نوترون وآشکارساز بودند. برعکس طیف آشکار سازها صفحه ای ( شکل5) در اینجا طیف دارای وقایع با انرژی بیش از2.73MeV است چون اگر واکنش در ناحیه نزدیک به نوک هرم رخ دهد، هر دو ذره (آلفا تریتون) آشکار خواهند شد.


دانلود با لینک مستقیم


دانلود مقاله کامل درباره «توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی»