یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

دانلود مقاله آشکار سازی اطلاعات بد و تعیین هویت

اختصاصی از یارا فایل دانلود مقاله آشکار سازی اطلاعات بد و تعیین هویت دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله آشکار سازی اطلاعات بد و تعیین هویت


دانلود مقاله آشکار سازی اطلاعات بد و تعیین هویت

 

 

 

 

 

 

 



فرمت فایل : word(قابل ویرایش)

تعداد صفحات:41

چکیده:

آشکارسازی اطلاعات بد و تعیین هویت

یکی از کارهای اساسی یک برآورد کننده عبارت اند از تعیین خطاهای اندازه گیری و تعیین و حذف آنها است اگر ممکن باشد، اندازه گیری ها ممکن است حاوی خطاهای ناشی از دلایل مختلف باشد. خطاهای تصادفی معمولاً در سنجش های ناشی از دقت محدود مترها و وسایل ارتباطات وجود دارند. اگر redundancy زائده های کافی در بین سنجش ها وجود داشته باشد، چنین خطاهایی توسط برآورد کننده حالت، فیلتر
می شود. طبیعت این عمل فیلتر کردن بستگی به روش برآورد بکار رفته دارد. خطاهای اندازه گیری بزرگ می توانند وقتی رخ دهند که مترها دارای بایاس ها، یا اتصالات (یا ارتباطات) غلط باشد. خرابی های سیستم ارتباطات از راه دور یا نویز ایجاد شده توسط تداخل پیش بینی نشده نیز منجر به انحرافات زیاد در سنجش های ثبت شده می شود. قطع نظر از این موارد، یک برآورد کننده ممکن است با اطلاعات توپولوژیک غیرصحیح فریب داده شود که بعداً بصورت اطلاعات بد توسط برآورد کننده تفسیر می شود. چنین موقعیتهایی (حالتهایی) به سختی کنترل می شوند و برطرف کردن خطاهای توپولوژی بعدا در فصل 7 بحث می شوند. بعضی اطلاعات بد آشکار هستند و می توانند توسط کنترل های ساده، آشکار شده یا حذف شوند. اندازه گیری مقادیر ولتاژ منفی از اندازه گیری بزرگتر یا کوچکتر از مقادیر پیش بینی شده اند از آن جمله است. یا تفاوت های زیاد جریانهای ورودی و خروجی در یک گره ارتباطی در یک ایستگاه فرعی از جمله مثالهای چنین اطلاعات بد می باشند. متأسفانه تمام انواع اطلاعات بد به آسانی قابل آشکار شدن توسط این دستگاه ها نمی باشند. بنابراین، برآورد کننده های حالت باید مجهز به ویژگی های پیشرفته تری باشند که آشکارسازی و تعیین هویت هر نوع از اطلاعات بد را آسان می کند. عملیات اطلاعات بد بستگی به روش برآورد حالت بکار رفته در اجرا دارد. این فصل بر روی آشکار سازی اطلاعات بد و روش های تعیین هویت تمرکز دارد که با روش WLS مرتبط هستند. سایر روش های برآورد حالت از قبیل روش هایی که در فصل 6 بحث می شوند، پردازش اطلاعات بد را بصورت روش برآورد کننده حالت ترکیب می کند و بنابراین بحث آنها شامل جنبه های عملیات اطلاعات بد نیز می باشد هنگام استفاده از روش برآورد WLS، آشکار سازی و تعیین هویت اطلاعات بد فقط پس از فرایند برآورد توسط پردازش باقیمانده های اندازه گیری انجام می شوند. تحلیل بر اساس خواص این باقیمانده ها است که شامل توزیع احتمالات پیش بینی شده آنها می باشد. اطلاعات بد ممکن است به راههای مختلفی ظاهر شود که بستگی به نوع، محل و تعداد اندازه گیری هایی دارد که در خطا هستند. آنها می توانند به این شرح طبقه بندی شوند :

  • اطلاعات بد واحد : فقط یکی از سنجش ها در کل سیستم دارای یک خطای بزرگ است.
  • اطلاعات بد چندگانه : بیش از یک اندازه گیری در خطا خواهد بود.

اطلاعات بد چندگانه ممکن است در سنجش هایی ظاهر شود که باقیمانده های آنها بطور قوی یا ضعیف مرتبط هستند، سنجش های مرتبط بطور قوی آنهایی هستند که خطاهای آنها بر روی مقدار برآورد شده از یکدیگر تاثیر زیادی می گذارند و باعث می شوند که مورد خوبی در خطا ظاهر شود هنگامی که سایر موارد حاوی یک خطای بزرگ باشد. برآوردهای اندازه گیری ها با باقیمانده های مرتبط تحت تاثیر خطاهای یکدیگر نمی باشند، وقتی که باقیمانده های اندازه گیری قویاً مرتبط باشند، خطاهای آنها ممکن است برابر باشند، خطاهای انطباقی / خطاهایی هستند که با یکدیگر بطور منطقی و سازگار ظاهر می شوند. اطلاعات بد چندگانه می توانند بعداً به یکی از این سه گروه طبقه بندی شوند :

  • اطلاعات بد غیر- تراکنشی چندگانه : اطلاعات بد در سنجش های دارای بقایای اندازه گیری مرتبط ضعیف
  • اطلاعات بد غیر- انطباقی ولی تراکنشی چندگانه : اطلاعات بد غیر انطباقی در سنجش ها با بقایای مرتبط قوی.
  • اطلاعات بد انطباقی و تراکنشی چندگانه : اطلاعات بد سازگار در سنجش های با بقایای مرتبط قوی.

تعیین مقدار تراکنش بین سنجش ها و تحلیل خطاها می توانند براساس حساسیت های بقایای اندازه گیری برای خطاهای اندازه گیری انجام شوند. خواص بقایای اندازه گیری ای که توسط روش برآورد حالت 6 ساله بدست می آیند از قبل برای این منظور، بازنگری می شوند. عملیات اطلاعات بد بستگی به روش برآورد حالت بکار رفته در اجرا دارد. این فصل برروی آشکار سازی اطلاعات بدو روش های تعیین هویت های تمرکز دارد که با روش WLS بکار رفته متداول مرتبط است، سایر روش های برآورد حالت از قبیل مواردی که در فصل 6 بحث می شوند، پردازش اطلاعات بد را بصورت بخشی از روش برآورد حالت ترکیب می شوند و بحث آنها شامل
جنبه های عملیات آنها بر روی اطلاعات بد نیز می باشد. هنگام استفاده از روش برآورد WLS ، آشکار سازی و تعیین هویت اطلاعات بد فقط پس از فرایند برآورد توسط پردازش باقیمانده های اندازه گیری انجام می شوند. تحلیل بر اساس خواص این باقیمانده ها است که شامل توزیع احتمالات پیش بینی شده آنها است، اطلاعات بد ممکن است به روش های مختلفی ظاهر شوند که بستگی به نوع، محل و تعداد اندازه گیری هایی دارد که که در خطا هستند. اطلاعات بد چندگانه ممکن است در اندازه گیری هایی ظاهر شوند که بقایای آنها بطور قوی یا ضعیف مرتبط می شوند، اندازه گیری های مرتبط شده قوی آن اندازه گیری هایی هستند که خطاهای آنها بر روی مقدار برآورد شده یکدیگر تاثیر چشمگیری می گذارند که باعث می شود که موارد خوب نیز در خطا ظاهر شوند هنگامی که دیگری حاوی یک خطای بزرگ است، برآوردهای اندازه گیری ها با باقیمانده های مرتبط بطور چشمگیری تحت تاثیر خطاهای یکدیگر نمی باشند. وقتی که باقیمانده های اندازه گیری با خطاهای آنها مرتبط باشند، خطاهای آنها ممکن است مطابقت نداشته باشد. خطاهای انطباقی، خطاهایی هستند که با یکدیگر سازگار بنظر می رسند. اطلاعات بد چندگانه می توانند بعداً به سه گروه طبقه بندی شوند. 1- اطلاعات بد غیر تراکنشی چندگانه : اطلاعات بد در اندازه گیری ها با باقیمانده های اندازه گیری مرتبط ضعیف.

2- اطلاعات بد غیر انطباقی ولی تراکنشی چندگانه : اطلاعات بد غیر انطباقی در اندازه گیری ها با باقیمانده های مرتبط.

3- اطلاعات بد انطباقی و تراکنشی چندگانه : اطلاعات بد منطقی در اندازه گیری ها با باقیمانده های مرتبط قوی.

تعیین کیفیت میزان تراکنش بین اندازه گیری ها و تحلیل خطاها می تواند بر اساس حساسیت های باقیمانده های اندازه گیری برای سنجش خطاها، انجام شود. خواص باقیمانده های اندازه گیری که توسط روش برآورد WLS بدست می آیند در زیر بازنگری میشود.

1-5 خواص باقیمانده های اندازه گیری

معادلات اندازه گیری خطی شده را در نظر بگیرید:

بطوری که E (e)=0 و COV (e) = R است که یک ماتریس قطری براساس این فرض است که خطاهای اندازه گیری مرتبط نمی باشند. توجه کنید که باقیمانده های اندازه گیری ممکن است هنوز مرتبط باشند. حتی اگر خطاهای مستقل درنظر گرفته شوند. آنگاه برآورد کننده WLS از بردارها حالت تغییر داده شده چنین می شود :     


دانلود با لینک مستقیم

دانلود مقاله توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی

اختصاصی از یارا فایل دانلود مقاله توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی


دانلود مقاله توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی

 

 

 

 

 

 

 


فرمت فایل : word(قابل ویرایش)

تعداد صفحات:10

چکیده:

   آشکار سازی های نیمه هادی نوترون برای رادیوبیولوژی نوترون و شمارش آن دارای اهمیت بسیار زیادی هستند. آشکار سازی های ساده سیلیکونی نوترون ترکیبی از یک دیود صفحه ای با لایه ای از یک مبدل مناسب نوترون مثل  6LiFمی باشند. چنین وسایلی دارای بهره آشکار سازی محدودی می باشندکه معمولاً بیشتر از 5% نیست. بهره آشکار سازی را می توان با ساخت یک ساختار میکرونی3D به صورت فرو رفتگی، حفره یا سوراخ و پر کردن آن با ماده مبدل نوترون افزایش داد. اولین نتایج ساخت چنین وسیله ای در این مقاله ارائه شده است.
   آشکار سازهای سیلیکونیN با حفره های هرمی شکل در سطح پوشیده شده با 6LiF ساخته شده و سپس تحت تابش نوترونهای حرارتی قرار گرفتند. طیف ارتفاع پالس انرژی تابش شده به حجم حساس با شبیه سازی مورد مقایسه قرار گرفت. بهره آشکار سازی این وسیله در حدود 6.3% بود. نمونه هایی با سایز ستونهای مختلف  ساخته شد تا خواص الکتریکی ساختارهای سه بعدی مورد مطالعه قرار گیرد.ضرایب جمع آوری بار در ستونهای سیلیکون از 10تا800 nm عرض و 80تا nm 200ارتفاع با ذرات آلفا اندازه گیری شد. بهره آشکار سازی یک ساختار 3D کامل نیز شبیه سازی شد. نتایج نشان از تقویت بهره آشکار سازی  با فاکتور 6در مقایسه با آشکار سازهای صفحه ای استاندارد نوترون دارد.
 1. مقدمه و اهداف: آشکار سازهای نوترونی نمی توانند مستقیماً برای آشکار سازی نوترونهای حرارتی به کار روند و باید از ماده ای استفاده کرد که نوترونها را به صورت تشعشع قابل آشکار سازی در آورد. مواد مختلفی برای این منظور وجود دارند که در بین آنها6Li  از همه مناسب تر به نظر می رسد. واکنش گیر افتادن نوترون در6Li دارای سطح مقطع942 b در انرژی نوترونی0.0253eV است.
  6Li+n→∝(2.05MeV) +3H(2.73MeV           
مواد مبدل با پایه6Li دارای سطح مقطع گیر انداختن نورونهای بالایی بوده و انرژی محصولات تولید شده آن نیز برای آشکار شدن به قدر کافی بالا می باشد. هدف نهایی آشکار سازR&D که در اینجا شرح داده می شوند ایجاد یک سنسور تصویر برداری نوترون با حساسیت بالا و قدرت تفکیک فضایی مناسب است. ما قبلاً با موفقیت چیپMedipix-2 با چیپ سنسور صفحه ای پوشیده با مبدل نوترون6Li را آزمایش کرده ایم. قدرت تفکیک فضایی چنین وسیله ای در حدود 65nm(نشانه ای از  FWHMتابع پخش خطی) به خوبی با ابزارهای تصویر برداری نوترون قابل رقابت است. نسبت سیگنال به نویز(SNR) آشکارسازی سیلیکون نیز بالاتر از آشکار سازهای نوترونی فعلی است. با این وجود بهره آشکار سازی چنین آشکارسازهای نیمه هادی صفحه ای(نسبت تعداد آشکار شده به تعداد نوترون برخوردی) در حدود5%  محدود می باشد. بهره آشکارسازی را می توان با ایجاد حفره یا سوراخ هایی (ساختار 3D ) در بدنه آشکار ساز سیلیکون افزایش داد.
 2. آشکار سازی آشکارسازهای نوترونی صفحه ای:
برای پیش بینی بهره آشکارسازی ساختار صفحه ای از یک بسته نرم افزار شبیه سازی مونت کارلو استفاده شد. این بسته ترکیبی بود ازMCNP-4C (شبیه سازی انتقال نوترونی) با SRIM/TRIM (قدرت توقف) و کد مونت کارلو C++  متعلق به خودمان(شبیه سازی انتقال انرژی، طیف ارتفاع پالس، بهره آشکار سازی و....)
    شکل  1بهره آشکار سازی را در مقابل ضخامت ماده مبدل6LIF (6LI غنی شده تا 89%)، اول برای تشعشع قدامی که منحنی مقدار بیشینه  4.48% را در ضخامت 7mg/cm2 نشان می دهد. بهره آشکار سازی در ضخامتهای بیشتر از این حد کاهش می یابد چون ذرات آلفا و تریتیوم تولید شده در سطوح دورتر LiFاز مرز Si-LiF قادر به رسیدن به حجم حساس نیستند. به علاوه تعداد بیشتر نوترونها در نزدیکی سطح خارجی مبدل جذب می شوند(شکل 2a را ببینید). منحنی دوم در شکل1 مخصوص آشکار سازی است که از پشت تحت تابش قرار گرفته است.
   در ضخامتهای بالا تراز7mg/cm2، بهره آشکار سازی در حدود 4.90%ثابت باقی می ماند. نوترونها به صورت قابل ترجیحی در نزدیکی مرز مبدل نیمه هادی جذب می شوند )شکل(b.2 و بهره آشکارسازی اشباع شده و مستقل از ضخامت آشکار ساز می باشد.
طیف انرژی تابشی در آشکار ساز صفحه ای ساده اندازه گیری شد(شکل 3). نمونه مورد استفاده یک آشکارساز سیلیکونی  5×5mm2و 300µm  ضخامت بود. مقاومت حجم n-type در حدود 5kΩcm بود. بخشی از نمونه با لایه ای از6LiF با  89% لیتیوم پوشانده شده بود(به این دلیل فقط بخشی از آن پوشانده شده بود تا بخشی به صورت فضای باز برای کالیبراسیون انرژی با ذرات آلفای منبع کالیبراسیون در اختیار داشته باشیم). طیف حاصل را با نتایج شبیه سازی مونت کارلو مقایسه کردیم. شبیه سازی به خوبی با نتایج اندازه گیری شده مطابقت داشت. نمونه از پشت با دسته پرتو نوترون حرارتی مورد تابش قرار گرفت. اندازه گیریها در کانال افقی (هدایت نوترون) راکتور تحقیقاتی هسته ای LVR-15 در موسسه فیزیک هسته ای دانشگاه چک در Rez در نزدیکی پراگ انجام پذیرفتند. فلوی نوترون در حدود106cm-2s-1در قدرت راکتور8MW بودند.
  آلفا و تریتون تولید شده از واکنش گیر انداختن نوترون حرارتی اغلب در جهتهای متضاد به حرکت در می آیند (شکل4) آشکارساز صفحه ای ساده یکی از دو ذره الفا یا تریتون را آشکار می کند نه هر دو را. بنابر این طیف انرژی تابشی هرگز دارای انرژی بالاتر مربوط به تریتون نخواهد بود.


دانلود با لینک مستقیم

مقاله و تحقیق مهندسی مکانیک - آشکار سازی نشت لوله بویلر در نیروگاه باارتعاش گیرAMS

اختصاصی از یارا فایل مقاله و تحقیق مهندسی مکانیک - آشکار سازی نشت لوله بویلر در نیروگاه باارتعاش گیرAMS دانلود با لینک مستقیم و پرسرعت .

مقاله و تحقیق مهندسی مکانیک - آشکار سازی نشت لوله بویلر در نیروگاه باارتعاش گیرAMS


مقاله و تحقیق مهندسی مکانیک - آشکار سازی نشت لوله بویلر در نیروگاه باارتعاش گیرAMS

 

 

 

 

 

 

 

 


فرمت فایل :docx(قابل ویرایش)

تعداد صفحات:12

فهرست مطالب:

 

  • conemoughآشکار سازی نشت لوله بویلر در نیروگاه باارتعاش گیرAMS
  • تئوری آشکار سازی نشت
  • نشتهای هوابرد
  • نشتهای فلز برد
  • نحوه مقابله با تاثیر صدای دمنده دوده
  • فن آوریهای موج بر
  • مقایسه موجبرهای هوا برد و فلز برد
  • کارهای تحقیقاتی در Conemough
  • مزایای موجبرهای فلز برد
  • نتیجه گیری

 

چکیده:


در سیستم AMsاز موجبرها [و سنسورهای نصب شده روی دیواره بویلر و لوله های نوع peg finned  برای شنیدن صداهای ناشی از نشت استفاده می شود . در نزدیکی محل هر موجبر یک تقویت کننده اولیه قرار دارد که از طریق یک کابل کواکسیال بطول 1500 ft به کابین سیستم متصل می شود. سیستم AMS در اتاق پخش کار قرار داده می شود. این سیستم دارای یک مدار الکترونیکی برای تقویت و فیلتر کردن سیگنالهای ورودی می باشد و نرم افزاری برای محدود کردن سیگنال صوتی تقویت شده در باندهای فرکانسی 1.7 kHz تا 90 kHz و 20 Hz تا 1 kHz دارد. اگر انرژی صوتی ایجاد شده بوسیله نشت، از یک مقدار آستانه ای معین در یک مدت زمان معین فراتر رود، سیستم سیگنال هشدار تولید می کند.
در سیستم AMS ارزیابی قابلیت اطمینان ، میزان موثر بودن و هزینه سیستم آشکار سازی نشت مبتنی بر فن آوری جدید موجبر فلز برد بود..
نتایج نشان داد که موجبرهای فلز برد بسیار حساستر از موج برهای هوا برد هستند . همچنین اثبات شد که موجبرهای فلز برد  قابلیت اطمینان بیشتری نسبت به موجبرهای هوا برد دارند و هزینه نصب آنها کمتر از موجبرهای هوا برد می باشد . با توجه به این که برای نصب موجبرهای فلز برد نیاز به وجود روزنه در کوره نیست، کاربرد این موجبرها در کوره پایین بسیار ارزشمند است.
برنامه های نیروگاه برای آینده، نصب سنسورهای بیشتر به هر دو واحد با تعداد بهینه 28 است. با افزایش تعداد سنسور ها می توان تمام بخشهای هر دو واحد را تحت پوشش قرار داد . سیستم  AMS-2 می تواند حداکثر 192 ورودی را روی حداکثر 8  بویلر متفاوت نظارت کند.
تئوری آشکار سازی نشت
این سیستم برای آشکار سازی نشتهای جزئی بخار در سیستمهای تحت فشار نظیر بویلر های قدرت، بویلر های بازیابی و هیتر ها  طراحی شده است. این سیستم، کار آشکارسازی را با اندازه گیری مداوم صداهای داخلی بویلر با استفاده از سنسورهای پیزو الکتریک انجام می دهد. سنسور ها در تمام بخشهای بویلر قرار داده می شوند و تعداد آنها بسته به اندازه بویلر بین 12 تا 40 سنسور در هر بویلر می باشد. ارتعاشات ایجاد شده بوسیله نشت لوله توسط سنسور به یک سیگنال ولتاژ تبدیل می شود و سیستم آن را ثبت می نماید.
 


  AMS -2 شکل 1 اجزای تشکیل دهنده سیستم
 


سیگنال تولید شده بوسیله سنسور توسط یک مدار الکترونیکی در باند فر کانسی بین 1.7 kHz تا 11 kHz فیلتر و تقویت می گردد. در  باند فوق، بین سیگنالهای ناشی از  نشت و نویز عادی محیط بیشترین اختلاف وجود دارد. در نیروگاه Conemough علاوه بر باند فوق، باند فرکانسی بین 20 Hz تا 1 kHz نیز برای تعیین حساسیت این باند  به نویزهای نشت، نظارت  می شود. علاوه بر سیگنال صوتی هر سنسور ، سیستم از پارامترهای کمکی دیگری نیز همچون بار (MW)، فلوی گاز و فشار  گرمکن مجدد استفاده می نماید. این پارامترها برای تعیین تاثیر شرایط کار عادی نیروگاه روی نویز محیطی عادی بویلر سودمند هستند. در نیروگاهConemough ، بهره بردار هم بصورت مستقیم و هم از طریق واسط سریال DCS میتواند با سیستم AMS در ارتباط با شد. در نیروگاه Conemough ، سیستم AMS از موجبرهای فلز برد برای انتقال نویزهای ناشی از نشت به سنسورها استفاده می کند. موجبر فلز برد یا Sounding Rod، یک میله فولادی ضد زنگ  به قطر  3/8 in و طول 12 in  است که به دیواره لوله های بویلر و بدنه بویلر جوش داده می شود. یک سر  این موجبر، سوراخ است وسر دیگر آن به بویلر جوش داده می شود که برای  سهولت جوشکاری همانند نوک اسکنه ساخته شده است . در سر سوراخ دار موجبر، سنسور مخصوص محیطهای با دمای زیاد نصب می گردد. سنسور طوری طراحی شده است که نویزهای محیط خارجی بویلر کمترین تاثیر را روی آن دارند. در بخشهایی از بویلر مانند اکونومایزر که لوله های  peg-finnedوجود دراند، یک صفحه به ابعاد 12 in  12 in  ¼ in  نصب می شود که همانند یک صفحه جمع کننده صدا عمل می نماید. موجبر فلز برد به مرکز صفحه متصل می شود. نیروگاه Conemough اولین جایی بود که این روش تجربی را برای اتصال موجبر فلز برد استفاده نموده است.
 



شکل  2: نمایش موج بر – نشت
نویزهای ناشی از نشت بخار از طریق گازهای داخل بویلر و از طریق مسیرهای فلزی منتقل می شوند . سیستم AMS  از موجبرهای فلز برد با سنسورهای صوتی برای آشکارسازی ارتعاشات نشتهای هوابرد و فلز برد استفاده میکند. شکل2 نحوه آشکارسازی نشتهای هوابرد وفلز بردرا بوسیله موجبرهای فلز برد نشان می دهد.
نشتهای هوابرد : اگر نشتی در داخل بویلر مثلاً در سوپر هیتر، ری هیتر  یا اکونومایزر وجود داشته باشد ، ارتعاشات ناشی از آن نشت، امواج صوتی تولید می کند که از گازهای داخل بویلر عبور نموده و به دیواره بویلر یا صفحه موجبر برخورد می کند. دیواره بویلر و یا صفحه متصل به موجبر همانند یک دیافراگم عمل می نماید و به ارتعاش در می آید و باعث ارتعاش سنسور و در نتیجه تغییر ولتاژ می شود. این ولتاژ توسط سیستم  تقویت، فیلتر و تحلیل می شود و در صورتی که سیگنال از یک مقدار آستانه ای معین برای مدتی بیش از یک تاخیر زمانی معین تجاوز نماید، سیستم یک سیگنال هشدار تولید می کند.
نشتهای فلز برد: اگر نشتی در دیواره آب، چه در داخل و چه در خارج بویلر وجود داشته باشد ، این نشت ارتعاشاتی تولید می کند که از لوله ها و دیواره ها می گذرند و به سنسور می رسند. سنسور این ارتعاشات را به یک سیگنال ولتاژ تبدیل می کند که سیستم آن را تقویت ، فیلتر و تحلیل می نماید .اگر سیگنال از یک مقدار آستانه ای معین برای مدت زمانی بیش از یک مقدار معین تجاوز کند سیستم یک سیگنال هشدار تولید می نماید.


دانلود با لینک مستقیم