یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

مقاله مشخص کردن راکتانس محورهای d وq از موتورهای سنکرون مغناطیس دائم بدون اندازه گیری موقعیت روتور

اختصاصی از یارا فایل مقاله مشخص کردن راکتانس محورهای d وq از موتورهای سنکرون مغناطیس دائم بدون اندازه گیری موقعیت روتور دانلود با لینک مستقیم و پرسرعت .

مقاله مشخص کردن راکتانس محورهای d وq از موتورهای سنکرون مغناطیس دائم بدون اندازه گیری موقعیت روتور


مقاله مشخص کردن راکتانس محورهای  d وq  از موتورهای سنکرون مغناطیس دائم بدون اندازه گیری موقعیت روتور

 

 

 

 

 

 

مقاله مشخص کردن راکتانس محورهای  d وq  از موتورهای سنکرون مغناطیس دائم بدون اندازه گیری موقعیت روتور

خلاصه مقاله :

اهمیت موتورهای سنکرون مغناطیس دائم در زیاد شدن دامنه کاربردی آن است و در آینده بیشتر ( PMSMs ) بدون سنسورشفت عمل خواهند کرد و مشخصات تجربی پارامترهای ماشین که مقداری هم تلورانس دارند اطلاعات با ارزشی خواهد بود.

بنابراین در این مقاله روشی بیان شده که در آن نیروی الکترو موتوری القایی و راکتانس محور d از آزمایش بی باری و راکتانس محور q و زاویه بار از آزمایش بارداری به وسیله یک روش تحلیلی مشخص شده اند.

در این روش محدودیت اندازه گیری زاویه بار vوجود ندارد این روش مناسب است برای ( PMSMs ) های که بصورت عادی با جریان منفی محور d عمل می‌کنند بنابراین اشباع در مسیر شار محورd وجود ندارد. خیلی بیشتر از اینها، روش بسیار ساده ای است برای انجام دادن بوسیله هر تکنسین آزمایشگاهی

I­- مقدمه:

اهمیت موتورهای سنکرون مغناطیس دائم ( PMSMs ) هست در افزایش دامنه کاربردی آنها و متفاوت است از مدلهای پیشرفته مانند سروموتورها تا کاربردهای که حرکت خطی دارند از قبیل فن ها و پمپ ها دو دلیل عمده برای تمایل به این ماشینها وجود دارد:

1- بازده بالا و کاهش تلفات روتور در این ( P MSMs ) ها.

2- پایین بودن قیمت انرژی مغناطیسی بالا ( صرفه جویی اقتصادی بالا ).

بیشتر ( PMSMs ) سه فازه در مدل پیشرفته بصورت محرکهای با سنسور شفت عمل می‌کنن بوسیله بکارگیری الگوریتم کنترل بدون سنسور برای محرکهای با سرعتهای متغیر و در مورد کاربردهای حرکت خطی طبیعتاً بواسطه اساس عملکرد سنکرون آنها نیاز به سنسور شفت وجود ندارد.

اگر سنسور شفت برداشته شود مشخصات تجربی از پارامترهای ماشین هر چند که مقداری هم تلورانس دارند بسیار با ارزش خواهد بود در زیر نشان خواهیم داد که راکتانس محورهای d و q که از آزمایشهای بارداری بدست آمده بر اساس تابعی از بیان شده است که می تواند مشخص شود بوسیله بعضی از انواع سنسورهای شفت یا ماشینهای سنکرون دیگری که کوپل شده‌اند با محور شفت ماشین سنکرونی که در حال بررسی است.

در این مقاله روشی بیان شده که در آن نیروی محرکه القایی و راکتانس محور  d از آزمایش بی باری و راکتانس محور    q آزمایش بارداری بدست آمده اند به نظر مولف آرمایشهای ساده ای هستند که نیاز به داشتن دانش بالا و وسایل در مقایسه با آزمایشهای تعیین استاندارد موتورهای القایی ندارد و انجام آن برای تکنسین های آزمایشگاهی آسان است هر چند که نمی تواند ضمانتی با حساسیت بالا برای ماشینهای با اشباع زیاد باشد.

 

در 52 صفحه با قابلیت ویرایش وبا منابع


دانلود با لینک مستقیم

ماشینهای سنکرون سه فاز

اختصاصی از یارا فایل ماشینهای سنکرون سه فاز دانلود با لینک مستقیم و پرسرعت .

ماشینهای سنکرون سه فاز


ماشینهای سنکرون سه فاز

ماشینهای سنکرون سه فاز

31 صفحه در قالب word

 

 

 

مقدمه

ماشینهای سنکرون تحت سرعت ثابتی بنام سرعت سنکرون می چرخند . و جزء ماشینهای جریان متناوب (AC) محسوب می شوند . در این ماشینها بر خلاف ماشینهای القائی ( آسنکرون ) میدان گردان شکاف هوائی ورتور با یک سرعت که همان سرعت سنکروه است می چرخند . ماشینهای سنکروه سه فاز بر دو نوع اند .

1- ژنراتورهای سنکرون سه فاز یا الترناتورها

2- موتورهای سنکروه سه فاز

امروزه ژنراتورهای سنکرون سه فاز ستون فقرات شبکه های برق را در جهان تشکیل می دهد و ژنراتورهای عظیم در نیروگاهها وظیفه تولید انرژی الکتریکی را به دوش می کشند . موتورهای سنکرون در مواقعی بکار می روند که به سرعت ثابت نیاز داشته باشیم .

البته موتورهای سنکرون تکفاز کوچکی هم وجود دارد که در فصل بعد راجع به ان اشاره می کنیم . نوع خطی موتورهای سنکرون بنام موتورهای سنکرون خطی یا LSM نیز در سیستم های حمل و نقل بکار می رود .

یکی از مزایای عمده موتورهای سنکرون اینست که می تواند از شبکه توان راکتیو دریافت و یا به شبکه توان راکتیو تزریق کند . ماشینهای سنکرون اعم از ژنراتور و موتور جزء ماشینهای دو تحریکه محسوب می شوند زیرا سیم پیچ رتور آنها توسط منبع DC تغذیه گشته و از استاتور انها جریان AC می گذرد . باید دانست ساختمان ژنراتور و موتور سنکرون سه فاز شبیه یکدیگر است . شار شکاف هوائی در این ماشینها منتجه شارهای حاصله از جراین رتور و جریان استاتور می باشد .

در ماشینهای القائی ( فصل قبل ) تنها عامل تحریک کننده جریان استاتور محسوب می شد ، زیرا جریان رتور بر اثر عمل القاء پدید می امد . لذا موتورهای القائی همواره در حالت پس فاز مورد بهره برداری قرار می گیرند ، زیرا به جریان پس فاز راکتیوی نیاز داریم تا شار در ماشین حاصل شود . اما در موتورهای سنکرون اگر مدار تحریک رتور ، تحریک لازم را فراهم سازد ، استاتور جریان راکتیو نخواهد کشید و موتور در حالت ضریب توان واحد کار خواهد کرد .

اگر جریان تحریک رتور کاهش می یابد ، جریان راکتیو از شبکه به موتور سرازیر می شود تا به رتور جهت مغناطیس کننده گی ماشین کمک کند . در اینصورت موتور سنکرون سه فاز در حالت پس فاز کار خواهد کرد . اگر جریان تحریک رتور زیاد شود ( میدان رتور افزایش می یابد ) در اینصورت جریان راکتیو پیش فاز از شبکه کشیده می شود تا با میدان رتور به مخالفت برخیزد . در اینصورت موتور در حالت پیش فاز کار می کند و توان راکتیو به شبکه می فرستد .

از گفتار فوق نتیجه می شود که با تغییر جریان تحریک ( مدار رتور ) که جریانی DC است ، ضریب توان موتور سنکرون سه فاز را می توان کنترل نمود . باید دانست که در تمامی مراحل موتور از شبکه توان اکتیو (P) می کشد اما توان راکتیو موتور (Q) به نحوه تحریک بستگی دارد .

اگر موتور بی بار باشد تغییر جریان تحریک باعث می گردد که موتور گاهی بصورت مقاومت ، گاهی بصورت سلف و گاهی بصورت خازن عمل نماید . موتور سنکرون بی بار را کندانسور سنکرون می نامند و در سیستمهای انتقال انرژی جهت تنظیم ولتاژ مورد استفاده قرار می گیرد . در صنعت نیز گاهی برای بهبود ضریب توان بجای خازن از موتورهای سنکرون در حالت پیش فاز استفاده می شود .

در اینجا لازم است قدری درباره ساختمان ماشینهای سنکرون سه فاز اعم از موتور و ژنراتور بحث شود . شکل 1 و 6-1 شمای استاتور این ماشینها را نشان می دهد . درون شیارهای استاتور سیم پیچی سه فاز استاتور جا سازی شده است و استاتور در این ماشینها شبیه استاتور ماشینهای القائی فصل قبل است . در شکل 1 و 6-1 شمای دو نوع رتور برای ماشینهای سنکرون نشان داده شده است :

1- رتور با قطب های برجسته که در آن برجستگی قطبها مشهود است و قطبها توسط سیم پیچی تحریک یا سیم پیچی میدان تحریک می شوند . واضح است که در این نوع ماشینها شکاف هوائی ( فاصله بین رتور و استاتور ) غیر یکنواخت است . در زیر قطبها شکاف هوائی کم و در میان قطبها شکاف هوائی زیادی حاصل می شود شکل 1 و 6-1 .

2- رتور استوانه یا رتور غیر برجسته ، در این نوع ماشینها شکاف هوائی درون ماشین کاملا یکنواخت است و رتور بصورت یک استوانه نسبتا کامل ساخته می شود 0 شل 1 و 6-1) .

شکل (2 و 6-1) شمای بیرون ماشین سنکرون را نشان می دهد . می بینیم از استاتور سه پایانه خارج می شود که مربوط به سیستم سه فاز استاتور است . تغذیه جریان DC تحریک مربوط به رتور If نیز از طریق حلقه های لغزان موجود بر روی محور ماشین انجام می شود . شکل 3 و 6-1 وضعیت سیم پیچی های سه فاز استاتور و سیم پیچ تحریک را نشان می دهد.

 

ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است

متن کامل را می توانید در ادامه دانلود نمائید

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است


دانلود با لینک مستقیم

ماشین های سنکرون

اختصاصی از یارا فایل ماشین های سنکرون دانلود با لینک مستقیم و پرسرعت .

ماشین های سنکرون


ماشین های سنکرون

ماشینهای سنکرون

45 صفحه در قالب word

 

 

 

 

ماشین سنکرون همواره یکی از مهمترین عناصر شبکه قدرت بوده و نقش کلیدی در تولید انرژی الکتریکی و کاربردهای خاص دیگر ایفاء کرده است.

تاریخچه وساختار

ماشین سنکرون همواره یکی از مهمترین عناصر شبکه قدرت بوده و نقش کلیدی در تولید انرژی الکتریکی و کاربردهای خاص دیگر ایفاء کرده است.

ژنراتور سنکرون تاریخچه‌ای بیش از صد سال دارد. اولین تحولات ژنراتور سنکرون در دهه ۱۸۸۰ رخ داد. در نمونه‌های اولیه مانند ماشین جریان مستقیم، روی آرمیچر گردان یک یا دو جفت سیم‌پیچ وجود داشت که انتهای آنها به حلقه‌های لغزان متصل می‌شد و قطبهای ثابت روی استاتور، میدان تحریک را تامین می‌کردند. به این طرح اصطلاحاً قطب خارجی می‌گفتند. در سالهای بعد نمونه دیگری که در آن محل قرار گرفتن میدان و آرمیچر جابجا شده بود مورد توجه قرار گرفت. این نمونه که شکل اولیه ژنراتور سنکرون بود، تحت عنوان ژنراتور قطب داخلی شناخته و جایگاه مناسبی در صنعت‌برق پیدا کرد. شکلهای مختلفی از قطبهای مغناطیسی و سیم‌پیچهای میدان روی رتور استفاده شد، در حالی که سیم‌پیچی استاتور، تکفاز یا سه‌فاز بود. محققان بزودی دریافتند که حالت بهینه از ترکیب سه جریان متناوب با اختلاف فاز نسبت به هم بدست می‌آید. استاتور از سه جفت سیم‌پیچ تشکیل شده بود که در یک طرف به نقطه اتصال ستاره و در طرف دیگر به خط انتقال متصل بودند.
هاسلواندر اولین ژنراتور سنکرون سه فاز را در سال ۱۸۸۷ ساخت که توانی در حدود ۸/۲ کیلووات را در سرعت ۹۶۰ دور بر دقیقه (فرکانس ۳۲ هرتز) تولید می‌کرد. این ماشین دارای آرمیچر سه فاز ثابت و رتور سیم‌پیچی شده چهار قطبی بود که میدان تحریک لازم را تامین می‌کرد. این ژنراتور برای تامین بارهای محلی مورد استفاده قرار می‌گرفت.
در سال ۱۸۹۱ برای اولین بار ترکیب ژنراتور و خط بلند انتقال به منظور تامین بارهای دوردست با موفقیت تست شد. انرژی الکتریکی تولیدی این ژنراتور توسط یک خط انتقال سه فاز از لافن به نمایشگاه بین‌المللی فرانکفورت در فاصله ۱۷۵ کیلومتری منتقل می‌شد. ولتاژ فاز به فاز ۹۵ ولت، جریان فاز ۱۴۰۰ آمپر و فرکانس نامی ۴۰ هرتز بود. رتور این ژنراتور که برای سرعت ۱۵۰ دور بر دقیقه طراحی شده بود، ۳۲ قطب داشت. قطر آن ۱۷۵۲ میلیمتر و طول موثر آن ۳۸۰ میلیمتر بود. جریان تحریک توسط یک ماشین جریان مستقیم تامین می‌شد. استاتور آن ۹۶ شیار داشت که در هر شیار یک میله مسی به قطر ۲۹ میلیمتر قرار می‌گرفت. از آنجا که اثر پوستی تا آن زمان شناخته نشده بود، سیم‌پیچی استاتور متشکل از یک میله برای هر قطب / فاز بود. بازده این ژنراتور ۵/۹۶% بود که در مقایسه با تکنولوژی آن زمان بسیار عالی می‌نمود. طراحی و ساخت این ژنراتور را چارلز براون انجام داد.
در آغاز، اکثر ژنراتورهای سنکرون برای اتصال به توربینهای آبی طراحی می‌شدند، اما بعد از ساخت توربینهای بخار قدرتمند، نیاز به توربوژنراتورهای سازگار با سرعت بالا احساس شد. در پاسخ به این نیاز اولین توربورتور در یکی از زمینه‌های مهم در بحث ژنراتورهای سنکرن، سیستم عایقی است. مواد عایقی اولیه مورد استفاده مواد طبیعی مانند فیبرها، سلولز، ابریشم، کتان، پشم و دیگر الیاف طبیعی بودند. همچنین رزینهای طبیعی بدست آمده از گیاهان و ترکیبات نفت خام برای ساخت مواد عایقی مورد استفاده قرارمی‌گرفتند. در سال ۱۹۰۸ تحقیقات روی عایقهای مصنوعی توسط دکتر بایکلند آغاز شد. در طول جنگ جهانی اولی رزین‌های آسفالتی که بیتومن نامیده می‌شدند، برای اولین بار همراه با قطعات میکا جهت عایق شیار در سیم‌پیچهای استاتور توربوژنراتورها مورد استفاده قرار گرفتند. این قطعات در هر دو طرف، با کاغذ سلولز مرغوب احاطه می‌شدند. در این روش سیم‌پیچهای استاتور ابتدا با نوارهای سلولز و سپس با دو لایه نوار کتان پوشیده می‌شدند. سیم‌پیچها در محفظه‌ای حرارت می‌دیدند و سپس تحت خلا قرار می‌گرفتند. بعد از چند ساعت عایق خشک و متخلخل حاصل می‌شد. سپس تحت خلا، حجم زیادی از قیر داغ روی سیم‌پیچ‌ها ریخته می‌شد. در ادامه محفظه با گاز نیتروژن خشک با فشار ۵۵۰ کیلو پاسکال پر و پس از چند ساعت گاز نیتروژن تخلیه و سیم‌پیچها در دمای محیط خنک و سفت می‌شدند. این فرآیند وی پی‌آی نامیده می‌شد.
در اواخر دهه ۱۹۴۰ کمپانی جنرال الکتریک به منظور بهبود سیستم عایق سیم‌پیچی استاتور ترکیبات اپوکسی را برگزید. در نتیجه این تحقیقات، یک سیستم به اصطلاح رزین ریچ عرضه شد که در آن رزین در نوارها و یا وارنیش مورد استفاده بین لایه‌ها قرار می‌گرفت.
در دهه‌های ۱۹۴۰ تا ۱۹۶۰ همراه با افزایش ظرفیت ژنراتورها و در نتیجه افزایش استرسهای حرارتی، تعداد خطاهای عایقی به طرز چشمگیری افزایش یافت. پس از بررسی مشخص شد علت اکثر این خطاها بروز پدیده جدا شدن نوار یا ترک خوردن آن است. این پدیده به علت انبساط و انقباض ناهماهنگ هادی مسی و هسته آهنی به وجود می‌آمد. برای حل این مشکل بعد از جنگ جهانی دوم محققان شرکت وستینگهاوس کار آزمایشگاهی را بر روی پلی‌استرهای جدید آغاز کرده و سیستمی با نام تجاری ترمالاستیک عرضه کردند.
نسل بعدی عایقها که در نیمه اول دهه ۱۹۵۰ مورد استفاده قرار گرفتند، کاغذهای فایبرگلاس بودند. در ادامه در سال ۱۹۵۵ یک نوع عایق مقاوم در برابر تخلیه جزیی از ترکیب ۵۰ درصد رشته‌های فایبرگلاس و ۵۰ درصد رشته‌های PET بدست آمد که روی هادی پوشانده می‌شد و سپس با حرارت دادن در کوره‌های مخصوص، PET ذوب شده و روی فایبرگلاس را می‌پوشاند. این عایق بسته به نیاز به صورت یک یا چند لایه مورد استفاده قرار می‌گرفت. عایق مذکور با نام عمومی پلی‌گلاس و نام تجاری داگلاس وارد بازار شد.
مهمترین استرسهای وارد بر عایق استرسهای حرارتی است. بنابراین سیستم‌های عایقی همواره در ارتباط تنگاتنگ با سیستم‌های خنک‌سازی بوده‌اند. خنک‌سازی در ژنراتورهای اولیه توسط هوا انجام می‌گرفت. بهترین نتیجه بدست آمده با این روش خنک‌سازی یک ژنراتور MVA۲۰۰ با سرعت rpm۱۸۰۰ بود که در سال ۱۹۳۲ در منطقه بروکلین نیویورک نصب شد. اما با افزایش ظرفیت ژنراتورها نیاز به سیستم خنک‌سازی موثرتری احساس شد. ایده خنک‌سازی با هیدروژن اولین بار در سال ۱۹۱۵ توسط ماکس شولر مطرح شد. تلاش او برای ساخت چنین سیستمی از ۱۹۲۸ آغاز و در سال ۱۹۳۶ با ساخت اولین نمونه با سرعت rpm۳۶۰۰ به نتیجه رسید. در سال ۱۹۳۷ جنرال الکتریک اولین توربوژنراتور تجاری خنک شونده با هیدروژن را روانه بازار کرد. این تکنولوژی در اروپا بعد از سال ۱۹۴۵ رایج شد. در دهه‌های ۱۹۵۰ و ۱۹۶۰ روشهای مختلف خنک‌سازی مستقیم مانند خنک‌سازی سیم‌پیچ استاتور با گاز، روغن و آب پا به عرصه ظهور گذاشتند تا آنجا که در اواسط دهه ۱۹۶۰ اغلب ژنراتورهای بزرگ با آب خنک می‌شدند. ظهور تکنولوژی خنک‌سازی مستقیم موجب افزایش ظرفیت ژنراتورها به میزان MVA۱۵۰۰ شد.
یکی از تحولات برجسته‌ای که در دهه ۱۹۶۰ به وقوع پیوست تولید اولین ماده ابررسانای تجاری یعنی نیوبیوم- تیتانیوم بود که در دهه‌های بعدی بسیار مورد توجه قرار گرفت.

 

 

 

ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است

متن کامل را می توانید در ادامه دانلود نمائید

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است

 


دانلود با لینک مستقیم

تحقیق بررسی حفاظت ژنراتور سنکرون و مطالعه موردی آن در نیروگاه خوی

اختصاصی از یارا فایل تحقیق بررسی حفاظت ژنراتور سنکرون و مطالعه موردی آن در نیروگاه خوی دانلود با لینک مستقیم و پرسرعت .

تحقیق بررسی حفاظت ژنراتور سنکرون و مطالعه موردی آن در نیروگاه خوی


تحقیق بررسی حفاظت ژنراتور سنکرون و مطالعه موردی آن در نیروگاه خوی

 

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:140

فهرست مطالب:
فصل اول:    7
حفاظت ژنراتور و ژنراتور – ترانسفورمر از دید GEC  ALSTHOM    7
1-1 لزوم حفاظت ژنراتور:    8
1-2 زمین کردن (استاتور) و عیوب زمین:    12
1-3: ترانسفورمر زمین کننده ی نوترال ژنراتور:    17
1 – 4 : عیوب فاز به فاز    23
1 – 5 : عیوب اتصال حلقه    24
1 – 6 : حفاظت سیم پیچی ها :    26
1 – 6 – 1 : حفاظت دیفرانسیل طولی ژنراتورهای اتصال مستقیم به شبکه :    26
1 – 6 – 2 : حفاظت دیفرانسیل طولی ترانسفورمر – ژنراتور :    29
1 – 7 حفاظت اتصال حلقه در سیم پیچی استاتور    31
1 – 7 – 1 حفاظت دیفرانسیلی عرضی :    32
1 – 7 – 2 تشخیص اتصال حلقه به وسیله ی کنترل منتخبه ولتاژها :    33
1 – 7-3 روش رله ی جریان زیاد :    34
1 – 7 – 4 حفاظت حلقه به وسیله ی اندازه گیری مؤلفه ترتیب صفر ولتاژ    34
1 – 8 حفاظت اضافه بار :    36
1 – 9 حفاظت اضافه بودن :    37
1 – 9 – 1 حفاظت اضافه جریان کنترل شونده با ولتاژ    39
1 – 9 – 2 حفاظت اضافه جریان باز دارنده با ولتاژ :    40
1 – 10 حفاظت عیب زمین استاتور :    41
1-10-1 زمین کردن بامقاومت بالا :    43
1-10-2 زمین کردن باترانس توزیع :    44
1-10-3 حفاظت عیب زمین برای کل سیم پیچی استاتورک    46
1-10-3-1 طرح تزریق هارمونیک پایین :    47
1-10-3-2 طرح ولتاژ هارمونیک سوم:    47
1-11 حفاظت اضافه ولتاژ:    50
1-11-1 اضافه ولتاژ گذرا:    51
1-11-2 اضافه ولتاژ در فرکانس قدرت :    52
1-12  بارداری نامتعادل :    53
1-12-1 حفاظت ترتیب منفی :    56
1-13 عیوب روتور:    60
1-13-1 حفاظت عیب زمین روتور:    63
1-13-1-1 روش پتانسیومتر:    63
1-13-1-2 روش تزریق A.C :    64
1-13-1-3 روش تزیرق DC :    66
1-13-2 حفاظت جریان میدان برای ژانرتورهای بدون جاروبک :    67
1-14 کار کردن به صورت آسنکرون و لغزش قطب ) از دست دادن سنکرونیزم)    69
1-14-1 حفاظت در مقابل عملکرد آسنکرون:    77
1-14-2 حفاظت مقابل لغزش قطب :    78
1-15 فوق گرم شدن :    80
1-16 عیوب مکانیکی :    84
1-16-1 خرابی محرک اولیه :    84
1-16-2 فوق سرعت :    87
1-16-3 حفاظت بویلر :    89
1-16-4 فقدان خلاء :    90
1-16-5خرابی سیستم روغن روانکاری  :    90
1-16-6 اعواجاج روتور :    91
1-17 طرح حفاظتی کامل :    92
1-17-1  ژنراتور – ترانسفورمر :    94
1-17-2 حفاظت ترانسفورمر واحد :    95
1-18 فرونشانی تحریک میدان :    98
1-19 حفاظت ژنراتور  صنعتی :    99
1-20 رله های عددی :    100
1-21 عملکرد موازی با شبکه :    104

فصل دوم:    105
نمونه عملی: بررسی توابع حفاظتی و تنظیمات رله های حفاظتی واحد بخار نیروگاه خوی (طرح ABB)    105
2-1 تابع حفاظتی عیب زمین محدود شده ترانسفورمر GSU (64):    106
2-2 تابع حفاظت معکوس زمانی مؤلفه منفی (1 – 46) – مرحله ی تریپ:    107
2-3 تابع حفاظتی DT مؤلفه ی فاز منفی (2 – 46) – مرحله ی آلارم:    108
2-4 تابع حفاظت دیفرانسیل ژنراتور (87):    109
2-5 تابع حفاظت 95/% عیب زمین استاتور ژنراتور (64 S – 1):    109
2-6 تابع حفاظت زیر امپدانس (21):    110
2-7 تابع حفاظتی اضافه جریان ولتاژ کنترل شده (51 V) :    111
2-8 تابع حفاظت خرابی میدان ژنراتور (40):    112
2-9 تابع حفاظت زیر فرکانس (2/1 – U 81):    114
2-10 تابع حفاظت لغزش قطب (78):    115
2-11 تابع حفاظت 95% عیب زمین استاتور (2 – s 64)    116
2-12 تابع حفاظت در برابر از دیاد شار ترانسفورمر و ژانراتور (24) – تریپ    118
2-13 تابع حفاظت ازدیاد شار ترانسفورمر ژانراتور – آلارم:    119
2-14 تابع حفاظت عیب زمین روتور (64 R – 1/2):    119
2-15 تابع حفاظت اضافه ولتاژ (59 – 1/2):    120
2-16 تابع حفاظت زیر ولتاژ (2V):    120
2-17 تابع حفاظت توان معکوس (32R)    121
2-18 تابع حفاظت دیفرانسیل ترانسفورمر (8VT) GSU    122
2-19 تابع حفاظت عیب زمین در طرف ولتاژ بالای ترانسفورمر (51 N) GSU :    125
2-20 تابع حفاظت مدار باز O / C معکوس زمانی ولتاژ پایین تر ترانسفورمر GSU (51):    127
2-21 تابع حفاظت مدار باز O / C لحظه ای طرف ولتاژ پایین ترانسفورمر (50)    129
2-22 تابع حفاظت در برابر فوق گرم شدن ترانسفورمر GSU (49):    129
2-23 تابع حفاظت مدار باز O / C معکوس زمانی طرف ولتاژ بالای ترانسفورمر GSU (51) :    130
2-23 تابع حفاظت مدار باز O / C معکوس زمانی طرف ولتاژ بالای ترانسفورمر (51) GSU :    131
2-24 تابع حفاظت مدار باز O / C لحظه ای طرف ولتاژ بالای ترانسفورمر GSU (50) :    133
2-25 تابع حفاظت O / C معکوس زمانی طرف ولتاژ بالای ترانس کمکی واحد (51):    134
2-26 تابع حفاظت O / C طرف ولتاژ بالای UAT (50):    136
2-27 تابع حفاظت دیفرانسیل مرسوم (87 GT) :    136
منابع و مراجع:    140


 

 

فصل اول:
حفاظت ژنراتور و ژنراتور – ترانسفورمر از دید GEC  ALSTHOM


1-1 لزوم حفاظت ژنراتور:
یک ژنراتور به عنوان قلب یک سیستم قدرت شناخته می شود که انرژی مکانیکی را به معادل الکتریکی آن تبدیل می کند که در قالب ولتاژهای با سطوح مختلف در دسترس است.
بنابراین در نظر گرفتن یک محرک اولیه جهت تأمین توان مکانیکی ورودی لازم است که می تواند در قالب توربین بخار، گاز، آبی یا موتورهایی دیزل برآورده شود. توربین های بخار عمدتاً در کاربردهای مربوط به تأمین برق پایه استفاده می شوند در صنعت غالباً سه نوع محرک اولیه استفاده می شود:
1.    توربین بخار: معمولاً در جاهائیکه بخار آب قابلیت دسترسی دارد به عنوان بار پایه یا ذخیره جهت تولید توان لحاظ می شود.
2.    توربین گازی: عموماً جهت برآوردن بارهای پیک و همچنین کاربردهای سیار در جهت به کار می رود.
3.    موتورهای دیزل: عمدتاً به کاربردهای مربوط به واحدهای آماده به کار ذخیره مربوط می شود.
ژنراتورهای سایز کوچک و متوسط عموماً مستقیماً به شبکه توزیع وصل می شوند. در حالیکه واحدهای توان بالاتر، از طریق ترانسفورمر به شبکه های EHV وصل می شوند. (شکل های زیر را ببینید.)
 
شکل 1-1: ژنراتورهای سایز کوچک و متوسط
 
شکل 1-2: واحدهای تولیدی بزرگ

یک واحد تولیدی بزرگ، سیستمی پیچیده است و از اجزایی کلی به صورت زیر تشکیل یافته است:
-    سیم پیچی استاتور با ترانسفورمرهای واحد و اصلی مربوطه
-    روتور با سیم پیچی میدان و اکسایترهای مربوطه.
-    توربین با بویلر، کندانسور، پمپ و فن های کمکی مربوطه اش.
عیب ها و خطاهای خیلی زیادی می توانند در سیستم رخ دهند که شیوه های حفاظتی متنوع و متفاوتی برای هر کدام مورد نیاز است. تمامی این شیوه ها در دو قالب زیر گروه بندی می شوند.
مکانیکی    الکتریکی
بروز عیب در محرک اولیه    عیب خرابی عایق های استاتور
خلاء کندانسوری پایین    اضافه بار
ایراد سیستم روغن کاری    اضافه ولتاژ
از دست دادن منبع حرارتی بویلر    بار نامتعادل
فرا سرعت    عیوب روتور
اختلالات روتور    فقدان تحریک
نوسانات خیلی زیاد    از دست دادن (فقدان) سنکرونیزم
.......    .......
عمده توجه ما به طرف الکتریکی و حفاظت های مربوطه به آن معطوف است. عیوب مختلفی می تواند در سیستم نیروگاه رخ دهد که بسته به گوناگونی عیب، روشهای حفاظتی متفاوتی مورد نیاز است. حجم حفاظت های صورت گرفته به فرضیات و شرایط اقتصادی طرح بستگی دارد. اهمیت ماشین و جایگاهش در سیستم قدرت باید رعایت گردد.
موارد ایجاد خطر و تهدید های قابل پیش بینی زیر باید به طور جدی مورد ارزیابی قرار گیرند:
1)    عیوب عایق کاری استاتور
2)    اضافه بار.
3)    اضافه ولتاژ.
4)    بار نامتعادل.
5)    عیوب روتور.
6)    فقدان تحریک.
7)    از دست دادن سنکرونیزم.
8)    از کار افتادن محرک اولیه.
9)    فقدان خلاء.
10)    از کار افتادن سیستم روغن کاری.
11)    از دست دادن آتش بویلر.
12)    فرا سرعت.
13)    اعوجاج روتور.
14)    اختلاف در انبساط قسمت های چرخان و ساکن.
15)    نوسانات فوق العاده.

1-2 زمین کردن (استاتور) و عیوب زمین:
نقطه نوترال سیم پیچی استاتور ژنراتور، معمولاً جهت حفاظت زمین می شود و برای محدود کردن جریان عیب زمین، معمولاً از طریق امپدانس این کار صورت می گیرد. خرابی عایق بندی استاتور می تواند منجر به عیب زمین در سیستم گردد. قوس های شدید به هسته ی ماشین می تواند منجر به سوختن آهن در نقطه ی بروز عیب و از بین رفتن لایه های عایقی و به هم چسبیدم ورقه های ذوب شده در آن نقطه شود. در موارد شدید و حاد، باید هسته دوباره طراحی و ساخته شود و هزینه های گزاف را تحمیل کند.
در عمل، جریان خطای زمین با توجه به محدودیت های اعمالی از مقدار جریان بار نامی تا مقادیر کمتر از آن نظیر 5A متغیر است.
ژنراتورهایی که مستقیماً به شبکه های توزیع وصل می شود معمولاً از طریق یک مقاومت زمین می شوند. در حالیکه واحد های ترانس – ژنراتور بزرگتر (که می توانند جداگانه و ایزوله از سیستم های انتقال EHV در نظر گرفته شوند) عموماً از طریق سیم پیچی اولیه ی یک ترانسفورمر ولتاژ زمین می شوند و سیم پیچی ثانویه با یک بار اهمی کوچک باردار می شود، مقاومت انتقالی، خیلی بزرگ است. (متناسب با مجذور نسبت دور) و این امر مانع از ایجاد اضافه ولتاژ گذاری شدید ناشی از آرک زنی در عیب زمین است.

 


دانلود با لینک مستقیم

مقاله ماشین های سنکرون

اختصاصی از یارا فایل مقاله ماشین های سنکرون دانلود با لینک مستقیم و پرسرعت .

مقاله ماشین های سنکرون


مقاله ماشین های سنکرون

 

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:47

فهرست مطالب:
تاریخچه وساختار    2
تحولات دهه ۱۹۷۰    5
جمع بندی تحولات دهه ۱۹۷۰    7
تحولات دهه ۱۹۸۰    7
جمع بندی تحولات دهه ۱۹۸۰    8
از ابتدای دهه ۱۹۹۰ تاکنون    9
تحولات دهه ۱۹۹۰    10
جمعبندی تحولات دهه ۱۹۹۰    13
تحولات ۲۰۰۰ به بعد    14
جمعبندی تحولات ۲۰۰۰ به بعد    15
ژنراتور  سنکرون    15
اتصالی های سه فاز و فاز-فاز در ژنراتورها    17
سیم پیچ    20
مزایای موتور آسنکرون با روتور قفسه ای    21
روتور قفسه سنجابی (Squirrel Cage Rotor)    23
مزایای موتور آسنکرون با روتور قفسه ای    23
معایب موتور آسنکرون با روتور قفسه ای    24
موتورهای جریان متناوبAC    24
مزایای موتور سنکرون    25
معایب موتور سنکرون    25
کاربرد موتور سنکرون    26
روتور قفسه سنجابی (Squirrel Cage Rotor)    26
ماشینهای سنکرون به دو دسته تقسیم می شود:    27
مدار سنکرون و آسنکرون    30
تعیین آرایش کلافها در شیار    33
محاسبه و طراحی موتورهای القایی سه فاز    34
ماشین های سنکرون سه فاز Three Phase Sychronous Machines    37
ساختمان ماشین های سنکرون سه فاز    38
موتور AC سه فاز سنکرون    41
موتور سنکرون AC تک فاز    45
نتیجه گیری    46
منابع و مراجع :    47

 

 

 

مقدمه

ماشین سنکرون همواره یکی از مهمترین عناصر شبکه قدرت بوده و نقش کلیدی در تولید انرژی الکتریکی و کاربردهای خاص دیگر ایفاء کرده است.

تاریخچه وساختار

ژنراتور سنکرون تاریخچه ای بیش از صد سال دارد. اولین تحولات ژنراتور سنکرون در دهه ۱۸۸۰ رخ داد. در نمونه های اولیه مانند ماشین جریان مستقیم، روی آرمیچر گردان یک یا دو جفت سیم پیچ وجود داشت که انتهای آنها به حلقه های لغزان متصل می شد و قطبهای ثابت روی استاتور، میدان تحریک را تامین می کردند. به این طرح اصطلاحاً قطب خارجی می گفتند. در سالهای بعد نمونه دیگری که در آن محل قرار گرفتن میدان و آرمیچر جابجا شده بود مورد توجه قرار گرفت. این نمونه که شکل اولیه ژنراتور سنکرون بود، تحت عنوان ژنراتور قطب داخلی شناخته و جایگاه مناسبی در صنعت برق پیدا کرد. شکلهای مختلفی از قطبهای مغناطیسی و سیم پیچهای میدان روی رتور استفاده شد، در حالی که سیم پیچی استاتور، تکفاز یا سه فاز بود. محققان بزودی دریافتند که حالت بهینه از ترکیب سه جریان متناوب با اختلاف فاز نسبت به هم بدست می آید. استاتور از سه جفت سیم پیچ تشکیل شده بود که در یک طرف به نقطه اتصال ستاره و در طرف دیگر به خط انتقال متصل بودند.

هاسلواندر اولین ژنراتور سنکرون سه فاز را در سال ۱۸۸۷ ساخت که توانی در حدود ۸/۲ کیلووات را در سرعت ۹۶۰ دور بر دقیقه (فرکانس ۳۲ هرتز) تولید می کرد. این ماشین دارای آرمیچر سه فاز ثابت و رتور سیم پیچی شده چهار قطبی بود که میدان تحریک لازم را تامین می کرد. این ژنراتور برای تامین بارهای محلی مورد استفاده قرار می گرفت.

در سال ۱۸۹۱ برای اولین بار ترکیب ژنراتور و خط بلند انتقال به منظور تامین بارهای دوردست با موفقیت تست شد. انرژی الکتریکی تولیدی این ژنراتور توسط یک خط انتقال سه فاز از لافن به نمایشگاه بین المللی فرانکفورت در فاصله ۱۷۵ کیلومتری منتقل می شد. ولتاژ فاز به فاز ۹۵ ولت، جریان فاز ۱۴۰۰ آمپر و فرکانس نامی ۴۰ هرتز بود. رتور این ژنراتور که برای سرعت ۱۵۰ دور بر دقیقه طراحی شده بود، ۳۲ قطب داشت. قطر آن ۱۷۵۲ میلیمتر و طول موثر آن ۳۸۰ میلیمتر بود. جریان تحریک توسط یک ماشین جریان مستقیم تامین می شد. استاتور آن ۹۶ شیار داشت که در هر شیار یک میله مسی به قطر ۲۹ میلیمتر قرار می گرفت. از آنجا که اثر پوستی تا آن زمان شناخته نشده بود، سیم پیچی استاتور متشکل از یک میله برای هر قطب / فاز بود. بازده این ژنراتور ۵/۹۶% بود که در مقایسه با تکنولوژی آن زمان بسیار عالی می نمود. طراحی و ساخت این ژنراتور را چارلز براون انجام داد.

در آغاز، اکثر ژنراتورهای سنکرون برای اتصال به توربینهای آبی طراحی می شدند، اما بعد از ساخت توربینهای بخار قدرتمند، نیاز به توربوژنراتورهای سازگار با سرعت بالا احساس شد. در پاسخ به این نیاز اولین توربورتور در یکی از زمینه های مهم در بحث ژنراتورهای سنکرن، سیستم عایقی است. مواد عایقی اولیه مورد استفاده مواد طبیعی مانند فیبرها، سلولز، ابریشم، کتان، پشم و دیگر الیاف طبیعی بودند. همچنین رزینهای طبیعی بدست آمده از گیاهان و ترکیبات نفت خام برای ساخت مواد عایقی مورد استفاده قرارمی گرفتند. در سال ۱۹۰۸ تحقیقات روی عایقهای مصنوعی توسط دکتر بایکلند آغاز شد. در طول جنگ جهانی اولی رزین های آسفالتی که بیتومن نامیده می شدند، برای اولین بار همراه با قطعات میکا جهت عایق شیار در سیم پیچهای استاتور توربوژنراتورها مورد استفاده قرار گرفتند. این قطعات در هر دو طرف، با کاغذ سلولز مرغوب احاطه می شدند. در این روش سیم پیچهای استاتور ابتدا با نوارهای سلولز و سپس با دو لایه نوار کتان پوشیده می شدند. سیم پیچها در محفظه ای حرارت می دیدند و سپس تحت خلا قرار می گرفتند. بعد از چند ساعت عایق خشک و متخلخل حاصل می شد. سپس تحت خلا، حجم زیادی از قیر داغ روی سیم پیچ ها ریخته می شد. در ادامه محفظه با گاز نیتروژن خشک با فشار ۵۵۰ کیلو پاسکال پر و پس از چند ساعت گاز نیتروژن تخلیه و سیم پیچها در دمای محیط خنک و سفت می شدند. این فرآیند وی پی آی نامیده می شد.

در اواخر دهه ۱۹۴۰ کمپانی جنرال الکتریک به منظور بهبود سیستم عایق سیم پیچی استاتور ترکیبات اپوکسی را برگزید. در نتیجه این تحقیقات، یک سیستم به اصطلاح رزین ریچ عرضه شد که در آن رزین در نوارها و یا وارنیش مورد استفاده بین لایه ها قرار می گرفت.

در دهه های ۱۹۴۰ تا ۱۹۶۰ همراه با افزایش ظرفیت ژنراتورها و در نتیجه افزایش استرسهای حرارتی، تعداد خطاهای عایقی به طرز چشمگیری افزایش یافت. پس از بررسی مشخص شد علت اکثر این خطاها بروز پدیده جدا شدن نوار یا ترک خوردن آن است. این پدیده به علت انبساط و انقباض ناهماهنگ هادی مسی و هسته آهنی به وجود می آمد. برای حل این مشکل بعد از جنگ جهانی دوم محققان شرکت وستینگهاوس کار آزمایشگاهی را بر روی پلی استرهای جدید آغاز کرده و سیستمی با نام تجاری ترمالاستیک عرضه کردند.

نسل بعدی عایقها که در نیمه اول دهه ۱۹۵۰ مورد استفاده قرار گرفتند، کاغذهای فایبرگلاس بودند. در ادامه در سال ۱۹۵۵ یک نوع عایق مقاوم در برابر تخلیه جزیی از ترکیب ۵۰ درصد رشته های فایبرگلاس و ۵۰ درصد رشته های PET بدست آمد که روی هادی پوشانده می شد و سپس با حرارت دادن در کوره های مخصوص، PET ذوب شده و روی فایبرگلاس را می پوشاند. این عایق بسته به نیاز به صورت یک یا چند لایه مورد استفاده قرار می گرفت. عایق مذکور با نام عمومی پلی گلاس و نام تجاری داگلاس وارد بازار شد.

مهمترین استرسهای وارد بر عایق استرسهای حرارتی است. بنابراین سیستم های عایقی همواره در ارتباط تنگاتنگ با سیستم های خنک سازی بوده اند. خنک سازی در ژنراتورهای اولیه توسط هوا انجام می گرفت. بهترین نتیجه بدست آمده با این روش خنک سازی یک ژنراتور MVA۲۰۰ با سرعت rpm۱۸۰۰ بود که در سال ۱۹۳۲ در منطقه بروکلین نیویورک نصب شد. اما با افزایش ظرفیت ژنراتورها نیاز به سیستم خنک سازی موثرتری احساس شد. ایده خنک سازی با هیدروژن اولین بار در سال ۱۹۱۵ توسط ماکس شولر مطرح شد. تلاش او برای ساخت چنین سیستمی از ۱۹۲۸ آغاز و در سال ۱۹۳۶ با ساخت اولین نمونه با سرعت rpm۳۶۰۰ به نتیجه رسید. در سال ۱۹۳۷ جنرال الکتریک اولین توربوژنراتور تجاری خنک شونده با هیدروژن را روانه بازار کرد. این تکنولوژی در اروپا بعد از سال ۱۹۴۵ رایج شد. در دهه های ۱۹۵۰ و ۱۹۶۰ روشهای مختلف خنک سازی مستقیم مانند خنک سازی سیم پیچ استاتور با گاز، روغن و آب پا به عرصه ظهور گذاشتند تا آنجا که در اواسط دهه ۱۹۶۰ اغلب ژنراتورهای بزرگ با آب خنک می شدند. ظهور تکنولوژی خنک سازی مستقیم موجب افزایش ظرفیت ژنراتورها به میزان MVA۱۵۰۰ شد.

یکی از تحولات برجسته ای که در دهه ۱۹۶۰ به وقوع پیوست تولید اولین ماده ابررسانای تجاری یعنی نیوبیوم تیتانیوم بود که در دهه های بعدی بسیار مورد توجه قرار گرفت.

تحولات دهه ۱۹۷۰

در این دهه تحول مهمی در فرآیند عایق کاری ژنراتور رخ داد. قبل از سال ۱۹۷۵ اغلب عایقها را توسط رزینهای محلول در ترکیبات آلی فرار اشباع می کردند. در این فرآیند، ترکیبات مذکور تبخیر و در جو منتشر می شد. با توجه به وضع قوانین زیست محیطی و آغاز نهضت سبز در اوایل دهه ۱۹۷۰، محدودیتهای شدیدی بر میزان انتشار این مواد اعمال شد که حذف آنها را از این فرآیند در پی داشت. در نتیجه استفاده از مواد سازگار با محیط زیست در تولید و تعمیر ماشینهای الکتریکی مورد توجه قرار گرفت. استفاده از رزینهای با پایه آبی یکی از اولین پیشنهاداتی بود که مطرح شد، اما یک راه حل جامعتر که امروزه نیز مرسوم است، کاربرد چسبهای جامد بود. در همین راستا تولید نوارهای میکای رزین ریچ بدون حلال نیز توسعه یافت.

از دیگر پیشرفتهای مهم این دهه ظهور ژنراتورهای ابررسانا بود. یک ماشین ابررسانا عموماً از یک سیم پیچ میدان ابررسانا و یک سیم پیچ آرمیچر مسی تشکیل شده است. هسته رتور عموماً آهنی نیست، چرا که آهن به دلیل شدت بالای میدان تولیدی توسط سیم پیچی میدان اشباع می شود. فقط در یوغ استاتور از آهن مغناطیسی استفاده می شود تا به عنوان شیلد و همچنین منتقل کننده شار بین قطبها عمل کند. عدم استفاده از آهن، موجب کاهش راکتانس سنکرون (به حدود pu۵/۰ ۳/۰) در این ماشینها شده که طبعاً موجب پایداری دینامیکی بهتر می شود. همانطور که اشاره شد، اولین ماده ابررسانای تجاری نیوبیوم تیتانیوم بود که تا دمای ۵ درجه کلوین خاصیت ابررسانایی داشت. البته در دهه های بعد پیشرفت این صنعت به معرفی مواد ابررسانایی با دمای عملکرد ۱۱۰ درجه کلوین انجامید. براین اساس مواد ابررسانا را به دو گروه دما پایین مانند نیوبیوم – تیتانیوم و دما بالا مانند BSCCO ۲۲۲۳ تقسیم می کنند. از اوایل دهه ۱۹۷۰ تحقیقات بر روی ژنراتورهای ابررسانا با استفاده از هادیهای دما پایین آغاز شد. در این دهه کمپانی وستینگهاوس تحقیقات برای ساخت یک نمونه دوقطبی را با استفاده هادیهای دماپایین آغاز کرد. نتیجه این پروژه ساخت و تست یک ژنراتور MVA۵ در سال ۱۹۷۲ بود.

در سال ۱۹۷۰ کمپانی جنرال الکتریک ساخت یک ژنراتور ابررسانا را با استفاده از هادی های دماپایین، با هدف نصب در شبکه آغاز کرد.

ساخت و تست این ژنراتور MVA۲۰، دو قطب و rpm۳۶۰۰ در سال ۱۹۷۹ به پایان رسید. در این ماشین از روش طراحی هسته هوایی بهره گرفته شده بود و سیم پیچ میدان آن توسط هلیم مایع خنک می شد. این ژنراتور، بزرگترین ژنراتور ابررسانای تست شده تا آن زمان (۱۹۷۹) بود.

در سال ۱۹۷۹ وستینگهاوس و اپری ساخت یک ژنراتور ابررسانای MVA۳۰۰ را آغاز کردند. این پروژه در سال ۱۹۸۳ به علت شرایط بازار جهانی با توافق طرفین لغو شد.

در همین زمینه کمپانی زیمنس ساخت ژنراتورهای دماپایین را در اوایل دهه ۱۹۷۰ شروع کرد. در این مدت یک نمونه رتور و یک نمونه استاتور با هسته آهنی برای ژنراتور MVA ۸۵۰ با سرعت rpm۳۰۰۰ ساخته شد، اما به دلیل مشکلاتی تست عملکرد واقعی آن انجام نشد.

در این دهه آلستوم نیز طراحی یک رتور ابررسانا برای یک توربو ژنراتور سنکرون را آغاز کرد. این رتور در یک ماشین MW۲۵۰ به کار رفت.

با توجه به اهمیت خنک سازی در کارکرد مناسب ژنراتورهای ابررسانا، همگام با توسعه این صنعت، طرحهای خنک سازی جدیدی ارایه شد. در ۱۹۷۷ اقای لاسکاریس یک سیستم خنک سازی دوفاز (مایع گاز) برای ژنراتورهای ابررسانا ارایه کرد. در این طرح بخشی از سیم پیچ در هلیم مایع قرار می گرفت و با جوشش هلیم دردمای ۲/۴ کلوین خنک می شد. جداسازی مایع ازگاز توسط نیروی گریز از مرکز ناشی از چرخش رتور صورت می گرفت.

جمع بندی تحولات دهه ۱۹۷۰

تمرکز اکثر تحقیقات بر روی کاربرد مواد ابررسانا در ژنراتورها بوده است.

۱) استفاده از روشهای کامپیوتری برای تحلیل و طراحی ماشینهای الکتریکی آغاز شد.

۲) حلالها از سیستمهای عایق کاری حذف شدند و تکنولوژی رزین ریچ بدون حلال ارایه شد.

تحولات دهه ۱۹۸۰

در این دهه نیز همچون دهه های گذشته سیستم های عایقی از زمینه های مهم تحقیقاتی بوده است. در این دهه آلستوم یک فرمول جدید اپوکسی بدون حلال کلاس F در ترکیب با گلاس فابریک و نوع خاصی از کاغذ میکا با نام تجاری دورتناکس را ارایه داد. این سیستم عایق کاری دارای استحکام مکانیکی بیشتر، استقامت عایقی بالاتر، تلفات دی الکتریک پایینتر و مقاومت حرارتی کمتری نسبت به نمونه های قبلی بود.

در ادامه کار بر روی پروژه های ابررسانا، در سال ۱۹۸۸ سازمان توسعه تکنولوژی صنعتی و انرژیهای نو ژاپن پروژه ملی ۱۲ ساله سوپر جی ام را آغاز کرد که نتیجه آن در دهه های بعدی به ثمر رسید.

سیستم های خنک سازی ژنراتورهای ابررسانا هنوز در حال پیشرفت بودند. در این زمینه می توان به ارایه طرح سیستم خنک سازی تحت فشار توسط انستیتو جایری ژاپن اشاره کرد. این طرح که در سال ۱۹۸۵ ارایه شد دارای یک مبدل حرارتی پیشرفته و یک مایع ساز هلیم با ظرفیت ۳۵۰ لیتر بر ثانیه بود.

در این مقطع شاهد تحقیقاتی در زمینه مواد آهن ربای دائم بودیم. استفاده از آهنرباهای نئودیمیوم – آهن بورون در این دهه تحول عظیمی در ساخت ماشینهای آهنربای دائم ایجاد کرد. مهمترین خصوصیت آهنرباهای نئودیمیوم آهن بورون انرژی مغناطیسی (BHmax) بالای آنهاست که سبب می شود قیمت هر واحد انرژی مغناطیسی کاهش یابد. علاوه بر این، انرژی زیاد تولیدی امکان به کارگیری آهنرباهای کوچکتر را نیز فراهم می کند، بنابراین اندازه سایر اجزا ماشین از قبیل قطعات آهن و سیم پیچی نیز کاهش می یابد و در نتیجه ممکن است هزینه کل کمتر شود. شایان ذکر است حجم بالایی از تحقیقات انجام شده این دهه در زمینه ژنراتورهای بدون جاروبک و خودتحریکه برای کاربردهای خاص بوده که به علت عمومیت نیافتن در صنعت ژنراتورهای نیروگاهی از شرح آنها صرفنظر می شود.

جمع بندی تحولات دهه ۱۹۸۰

با بررسی مقالات IEEE این دهه (۴۱ مقاله) در موضعات مختلف مرتبط با ژنراتور سنکرون به نتایج زیر می رسیم:

۱) تمرکز موضوعی مقالات در شکل نشان داده شده است.

۲) روشهای قبلی عایق کاری به منظور کاهش مقاومت حرارتی عایق بهبود یافت.

۳) مطالعات وسیعی روی ژنراتورهای سنکرون بدون جاروبک بدون تحریک صورت گرفت.

۴ فعالیت روی پروژه های ژنراتورهای ابررسانای آغاز شده در دهه قبل ادامه یافت.

۵) سیستمهای خنک سازی جدیدی برای ژنراتورهای ابررسانا ارایه شد.

۶) روش اجزای محدود در طراحی و تحلیل ژنراتورهای سنکرون خصوصاً ژنراتورهای آهنربای دائم به شکل گسترده ای مورد استفاده قرار گرفت.


دانلود با لینک مستقیم